-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathvisualise.py
66 lines (52 loc) · 1.81 KB
/
visualise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
from sklearn.metrics import confusion_matrix
import itertools
import os
import imagePreprocessingUtils as ipu
filename = input('Enter the csv file name to read: ')
sub = pd.read_csv(filename)
y_pred = np.array(sub.pop('PredictedLabel'))
y_test = np.array(sub.pop('TrueLabel'))
class_labels = ipu.get_labels()
def plot_confusion_matrix(cm, labels,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(labels))
plt.xticks(tick_marks, labels, rotation=45)
plt.yticks(tick_marks, labels)
if normalize:
print("Normalized confusion matrix")
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
else:
print('Confusion matrix, without normalization')
print(cm)
for i in cm:
a=0
for j in i:
a=a+j
print(a)
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j],
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
# Compute confusion matrix
cnf_matrix = confusion_matrix(y_test, y_pred)
np.set_printoptions(precision=2)
# Plot non-normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, labels=class_labels, title='Confusion matrix, without normalization')
plt.show()