| 
 | 1 | +// Code taken from the `packed_simd` crate  | 
 | 2 | +// Run this code with `cargo test --example dot_product`  | 
 | 3 | +//use std::iter::zip;  | 
 | 4 | + | 
 | 5 | +#![feature(array_chunks)]  | 
 | 6 | +#![feature(slice_as_chunks)]  | 
 | 7 | +// Add these imports to use the stdsimd library  | 
 | 8 | +#![feature(portable_simd)]  | 
 | 9 | +use core_simd::simd::*;  | 
 | 10 | + | 
 | 11 | +// This is your barebones dot product implementation:  | 
 | 12 | +// Take 2 vectors, multiply them element wise and *then*  | 
 | 13 | +// go along the resulting array and add up the result.  | 
 | 14 | +// In the next example we will see if there  | 
 | 15 | +//  is any difference to adding and multiplying in tandem.  | 
 | 16 | +pub fn dot_prod_scalar_0(a: &[f32], b: &[f32]) -> f32 {  | 
 | 17 | +    assert_eq!(a.len(), b.len());  | 
 | 18 | + | 
 | 19 | +    a.iter().zip(b.iter()).map(|(a, b)| a * b).sum()  | 
 | 20 | +}  | 
 | 21 | + | 
 | 22 | +// When dealing with SIMD, it is very important to think about the amount  | 
 | 23 | +// of data movement and when it happens. We're going over simple computation examples here, and yet  | 
 | 24 | +// it is not trivial to understand what may or may not contribute to performance  | 
 | 25 | +// changes. Eventually, you will need tools to inspect the generated assembly and confirm your  | 
 | 26 | +// hypothesis and benchmarks - we will mention them later on.  | 
 | 27 | +// With the use of `fold`, we're doing a multiplication,  | 
 | 28 | +// and then adding it to the sum, one element from both vectors at a time.  | 
 | 29 | +pub fn dot_prod_scalar_1(a: &[f32], b: &[f32]) -> f32 {  | 
 | 30 | +    assert_eq!(a.len(), b.len());  | 
 | 31 | +    a.iter()  | 
 | 32 | +        .zip(b.iter())  | 
 | 33 | +        .fold(0.0, |a, zipped| a + zipped.0 * zipped.1)  | 
 | 34 | +}  | 
 | 35 | + | 
 | 36 | +// We now move on to the SIMD implementations: notice the following constructs:  | 
 | 37 | +// `array_chunks::<4>`: mapping this over the vector will let use construct SIMD vectors  | 
 | 38 | +// `f32x4::from_array`: construct the SIMD vector from a slice  | 
 | 39 | +// `(a * b).reduce_sum()`: Multiply both f32x4 vectors together, and then reduce them.  | 
 | 40 | +// This approach essentially uses SIMD to produce a vector of length N/4 of all the products,  | 
 | 41 | +// and then add those with `sum()`. This is suboptimal.  | 
 | 42 | +// TODO: ASCII diagrams  | 
 | 43 | +pub fn dot_prod_simd_0(a: &[f32], b: &[f32]) -> f32 {  | 
 | 44 | +    assert_eq!(a.len(), b.len());  | 
 | 45 | +    // TODO handle remainder when a.len() % 4 != 0  | 
 | 46 | +    a.array_chunks::<4>()  | 
 | 47 | +        .map(|&a| f32x4::from_array(a))  | 
 | 48 | +        .zip(b.array_chunks::<4>().map(|&b| f32x4::from_array(b)))  | 
 | 49 | +        .map(|(a, b)| (a * b).reduce_sum())  | 
 | 50 | +        .sum()  | 
 | 51 | +}  | 
 | 52 | + | 
 | 53 | +// There's some simple ways to improve the previous code:  | 
 | 54 | +// 1. Make a `zero` `f32x4` SIMD vector that we will be accumulating into  | 
 | 55 | +// So that there is only one `sum()` reduction when the last `f32x4` has been processed  | 
 | 56 | +// 2. Exploit Fused Multiply Add so that the multiplication, addition and sinking into the reduciton  | 
 | 57 | +// happen in the same step.  | 
 | 58 | +// If the arrays are large, minimizing the data shuffling will lead to great perf.  | 
 | 59 | +// If the arrays are small, handling the remainder elements when the length isn't a multiple of 4  | 
 | 60 | +// Can become a problem.  | 
 | 61 | +pub fn dot_prod_simd_1(a: &[f32], b: &[f32]) -> f32 {  | 
 | 62 | +    assert_eq!(a.len(), b.len());  | 
 | 63 | +    // TODO handle remainder when a.len() % 4 != 0  | 
 | 64 | +    a.array_chunks::<4>()  | 
 | 65 | +        .map(|&a| f32x4::from_array(a))  | 
 | 66 | +        .zip(b.array_chunks::<4>().map(|&b| f32x4::from_array(b)))  | 
 | 67 | +        .fold(f32x4::splat(0.0), |acc, zipped| acc + zipped.0 * zipped.1)  | 
 | 68 | +        .reduce_sum()  | 
 | 69 | +}  | 
 | 70 | + | 
 | 71 | +// A lot of knowledgeable use of SIMD comes from knowing specific instructions that are  | 
 | 72 | +// available - let's try to use the `mul_add` instruction, which is the fused-multiply-add we were looking for.  | 
 | 73 | +use std_float::StdFloat;  | 
 | 74 | +pub fn dot_prod_simd_2(a: &[f32], b: &[f32]) -> f32 {  | 
 | 75 | +    assert_eq!(a.len(), b.len());  | 
 | 76 | +    // TODO handle remainder when a.len() % 4 != 0  | 
 | 77 | +    let mut res = f32x4::splat(0.0);  | 
 | 78 | +    a.array_chunks::<4>()  | 
 | 79 | +        .map(|&a| f32x4::from_array(a))  | 
 | 80 | +        .zip(b.array_chunks::<4>().map(|&b| f32x4::from_array(b)))  | 
 | 81 | +        .for_each(|(a, b)| {  | 
 | 82 | +            res = a.mul_add(b, res);  | 
 | 83 | +        });  | 
 | 84 | +    res.reduce_sum()  | 
 | 85 | +}  | 
 | 86 | + | 
 | 87 | +// Finally, we will write the same operation but handling the loop remainder.  | 
 | 88 | +const LANES: usize = 4;  | 
 | 89 | +pub fn dot_prod_simd_3(a: &[f32], b: &[f32]) -> f32 {  | 
 | 90 | +    assert_eq!(a.len(), b.len());  | 
 | 91 | + | 
 | 92 | +    let (a_extra, a_chunks) = a.as_rchunks();  | 
 | 93 | +    let (b_extra, b_chunks) = b.as_rchunks();  | 
 | 94 | + | 
 | 95 | +    // These are always true, but for emphasis:  | 
 | 96 | +    assert_eq!(a_chunks.len(), b_chunks.len());  | 
 | 97 | +    assert_eq!(a_extra.len(), b_extra.len());  | 
 | 98 | + | 
 | 99 | +    let mut sums = [0.0; LANES];  | 
 | 100 | +    for ((x, y), d) in std::iter::zip(a_extra, b_extra).zip(&mut sums) {  | 
 | 101 | +        *d = x * y;  | 
 | 102 | +    }  | 
 | 103 | + | 
 | 104 | +    let mut sums = f32x4::from_array(sums);  | 
 | 105 | +    std::iter::zip(a_chunks, b_chunks).for_each(|(x, y)| {  | 
 | 106 | +        sums += f32x4::from_array(*x) * f32x4::from_array(*y);  | 
 | 107 | +    });  | 
 | 108 | + | 
 | 109 | +    sums.reduce_sum()  | 
 | 110 | +}  | 
 | 111 | + | 
 | 112 | +// Finally, we present an iterator version for handling remainders in a scalar fashion at the end of the loop.  | 
 | 113 | +// Unfortunately, this is allocating 1 `XMM` register on the order of `~len(a)` - we'll see how we can get around it in the  | 
 | 114 | +// next example.  | 
 | 115 | +pub fn dot_prod_simd_4(a: &[f32], b: &[f32]) -> f32 {  | 
 | 116 | +    let mut sum = a  | 
 | 117 | +        .array_chunks::<4>()  | 
 | 118 | +        .map(|&a| f32x4::from_array(a))  | 
 | 119 | +        .zip(b.array_chunks::<4>().map(|&b| f32x4::from_array(b)))  | 
 | 120 | +        .map(|(a, b)| a * b)  | 
 | 121 | +        .fold(f32x4::splat(0.0), std::ops::Add::add)  | 
 | 122 | +        .reduce_sum();  | 
 | 123 | +    let remain = a.len() - (a.len() % 4);  | 
 | 124 | +    sum += a[remain..]  | 
 | 125 | +        .iter()  | 
 | 126 | +        .zip(&b[remain..])  | 
 | 127 | +        .map(|(a, b)| a * b)  | 
 | 128 | +        .sum::<f32>();  | 
 | 129 | +    sum  | 
 | 130 | +}  | 
 | 131 | + | 
 | 132 | +// This version allocates a single `XMM` register for accumulation, and the folds don't allocate on top of that.  | 
 | 133 | +// Notice the the use of `mul_add`, which can do a multiply and an add operation ber iteration.  | 
 | 134 | +pub fn dot_prod_simd_5(a: &[f32], b: &[f32]) -> f32 {  | 
 | 135 | +    a.array_chunks::<4>()  | 
 | 136 | +        .map(|&a| f32x4::from_array(a))  | 
 | 137 | +        .zip(b.array_chunks::<4>().map(|&b| f32x4::from_array(b)))  | 
 | 138 | +        .fold(f32x4::splat(0.), |acc, (a, b)| a.mul_add(b, acc))  | 
 | 139 | +        .reduce_sum()  | 
 | 140 | +}  | 
 | 141 | + | 
 | 142 | +fn main() {  | 
 | 143 | +    // Empty main to make cargo happy  | 
 | 144 | +}  | 
 | 145 | + | 
 | 146 | +#[cfg(test)]  | 
 | 147 | +mod tests {  | 
 | 148 | +    #[test]  | 
 | 149 | +    fn smoke_test() {  | 
 | 150 | +        use super::*;  | 
 | 151 | +        let a: Vec<f32> = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0];  | 
 | 152 | +        let b: Vec<f32> = vec![-8.0, -7.0, -6.0, -5.0, 4.0, 3.0, 2.0, 1.0];  | 
 | 153 | +        let x: Vec<f32> = [0.5; 1003].to_vec();  | 
 | 154 | +        let y: Vec<f32> = [2.0; 1003].to_vec();  | 
 | 155 | + | 
 | 156 | +        // Basic check  | 
 | 157 | +        assert_eq!(0.0, dot_prod_scalar_0(&a, &b));  | 
 | 158 | +        assert_eq!(0.0, dot_prod_scalar_1(&a, &b));  | 
 | 159 | +        assert_eq!(0.0, dot_prod_simd_0(&a, &b));  | 
 | 160 | +        assert_eq!(0.0, dot_prod_simd_1(&a, &b));  | 
 | 161 | +        assert_eq!(0.0, dot_prod_simd_2(&a, &b));  | 
 | 162 | +        assert_eq!(0.0, dot_prod_simd_3(&a, &b));  | 
 | 163 | +        assert_eq!(0.0, dot_prod_simd_4(&a, &b));  | 
 | 164 | +        assert_eq!(0.0, dot_prod_simd_5(&a, &b));  | 
 | 165 | + | 
 | 166 | +        // We can handle vectors that are non-multiples of 4  | 
 | 167 | +        assert_eq!(1003.0, dot_prod_simd_3(&x, &y));  | 
 | 168 | +    }  | 
 | 169 | +}  | 
0 commit comments