-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfigshare.py
604 lines (505 loc) · 24 KB
/
figshare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from requests import get, post
from json import loads
from pprint import pformat
import pandas as pd
from functools import lru_cache, wraps
from datetime import datetime
from logging import getLogger, basicConfig, INFO, DEBUG
import os
from pickle import load, dump
from flatten_dict import flatten
import urllib.request
import requests
import bibtexparser
from bibtexparser.bparser import BibTexParser
from bibtexparser.bibdatabase import BibDatabase
import shelve
import re
import argparse
from datetime import datetime
from difflib import SequenceMatcher
basicConfig(level=INFO)
logger = getLogger(__name__)
class doi2bib:
def __init__(self):
self.bibtext_cache_file = "bibtext_cache"
self.shortdoi_cache_file = "shortdoi_cache"
self.logger = getLogger("doi2bib")
self.logger.setLevel(INFO)
def shorten(self, doi):
"""
Get the shortDOI for a DOI. Providing a cache dictionary will prevent
multiple API requests for the same DOI.
"""
with shelve.open(self.shortdoi_cache_file) as cache:
if doi in cache:
self.logger.debug(f"short doi for {doi} found in cache")
return cache[doi]
quoted_doi = urllib.request.quote(doi)
url = 'http://shortdoi.org/{}?format=json'.format(quoted_doi)
try:
response = requests.get(url).json()
short_doi = response['ShortDOI']
except Exception as e:
self.logger.warning(f"failed to get short doi for {doi}: {e}")
return None
self.logger.debug(f"short doi for {doi} is {short_doi}, caching it")
cache[doi] = short_doi
return short_doi
def get_bibtext(self, doi):
"""
Use DOI Content Negotioation (http://crosscite.org/cn/) to retrieve a string
with the bibtex entry.
"""
with shelve.open(self.bibtext_cache_file) as cache:
if doi in cache:
self.logger.debug(f"bibtex for {doi} found in cache")
return cache[doi]
url = 'https://doi.org/' + urllib.request.quote(doi)
header = {
'Accept': 'application/x-bibtex',
}
response = requests.get(url, headers=header)
bibtext = response.text
if bibtext:
self.logger.debug(f"bibtex for {doi} found, caching it")
cache[doi] = bibtext
else:
self.logger.warning(f"failed to get bibtex for {doi}")
return bibtext
def get_bibtex_entry(self, doi):
"""
Return a bibtexparser entry for a DOI
"""
bibtext = self.get_bibtext(doi)
if not bibtext:
return None
short_doi = self.shorten(doi)
parser = BibTexParser()
parser.ignore_nonstandard_types = False
bibdb = bibtexparser.loads(bibtext, parser)
entry, = bibdb.entries
quoted_doi = urllib.request.quote(doi)
entry['link'] = 'https://doi.org/{}'.format(quoted_doi)
if 'author' in entry:
entry['author'] = ' and '.join(entry['author'].rstrip(';').split('; '))
entry['ID'] = short_doi[3:]
return entry
def entries_to_str(self, entries):
"""
Pass a list of bibtexparser entries and return a bibtex formatted string.
"""
db = BibDatabase()
db.entries = entries
return bibtexparser.dumps(db)
class FigShare:
def __init__(self, page_size=100):
self.logger = getLogger("FigShare")
self.token = os.getenv('FIGSHARE_TOKEN')
self.page_size = page_size
self.base_url = "https://api.figshare.com/v2"
# if cache file exist, load it
self.cache_file = "figshare_cache.pkl"
if os.path.exists(self.cache_file):
try:
with open(self.cache_file, "rb") as f:
self.__cache = load(f)
self.logger.debug(f"Loaded cache from {self.cache_file} with {len(self.__cache)} entries")
except Exception as e:
self.logger.warning(f"Failed to load cache: {e}")
self.__cache = {}
else:
self.logger.info(f"No cache file found at {self.cache_file}")
self.__cache = {}
def save_cache(self):
with open(self.cache_file,"wb") as f:
dump(self.__cache, f)
def __init_params(self):
return {
"page_size": self.page_size
}
def __get(self, url, params=None, use_cache=True):
hash_key = f"GET{url}?{params}"
if hash_key in self.__cache and use_cache:
return self.__cache[hash_key]
else:
headers = { "Authorization": "token " + self.token } if self.token else {}
result = get(self.base_url + url, headers=headers, params=params).json()
self.__cache[hash_key] = result
self.save_cache()
return result
def __post(self, url, params=None, use_cache=True):
hash_key = f"POST{url}?{params}"
if hash_key in self.__cache and use_cache:
return self.__cache[hash_key]
else:
headers = { "Authorization": "token " + self.token } if self.token else {}
result = post(self.base_url + url, headers=headers, params=params).json()
self.__cache[hash_key] = result
self.save_cache()
return result
def articles_by_user_name(self, user_name, use_cache=True):
params = self.__init_params()
params["search_for"] = f':author: \"{user_name}\"'
page = 1
articles = []
while True:
params["page"] = page
self.logger.info(f"retrieving page {page} for user {user_name}")
current_page_articles = self.__post("/articles/search", params=params, use_cache=use_cache)
page += 1
if len(current_page_articles) == 0:
break
articles += current_page_articles
self.logger.info(f"found {len(articles)} articles for user {user_name}")
return articles
def get_article(self, article_id, use_cache=True):
return self.__get(f"/articles/{article_id}", use_cache=use_cache)
class Author:
def __init__(self, name, debug=False):
self.logger = getLogger("Author")
if debug:
self.logger.setLevel(DEBUG)
self.name = name
self.fs = FigShare()
self.articles = {}
self.public_html_prefix = "https://repository.lincoln.ac.uk"
self.df = None
def save(self, filename=None):
if filename is None:
filename = f"{self.name}.db"
with shelve.open(filename) as db:
db['articles'] = self.articles
db['df'] = self.df
def load(self, filename=None):
if filename is None:
filename = f"{self.name}.db"
with shelve.open(filename) as db:
self.articles = db['articles']
self.df = db['df']
def _retrieve_figshare(self, use_cache=True):
self.logger.info(f"retrieving articles for {self.name}")
self.articles = self.fs.articles_by_user_name(self.name, use_cache=use_cache)
self.logger.info(f"found {len(self.articles)} articles for {self.name}")
def _retrieve_details(self, use_cache=True):
for article in self.articles:
self.logger.info(f"retrieving details for article {article['id']}")
article['details'] = self.fs.get_article(article['id'], use_cache=use_cache)
def _remove_non_repository(self):
self.logger.info(f"removing non-repository articles out of {len(self.articles)}")
self.articles = [a for a in self.articles if a['url_public_html'].startswith(self.public_html_prefix)]
self.logger.info(f"retained {len(self.articles)} articles")
def _custom_fields_to_dicts(self):
for article in self.articles:
if 'details' not in article:
continue
if 'custom_fields' not in article['details']:
continue
self.logger.debug(f"convert")
cf = article['details']['custom_fields']
if type(cf) == list:
new_cf = {}
for p in cf:
new_cf[p['name']] = p['value']
article['details']['custom_fields'] = new_cf
def _guess_doi(self, article):
"""
Use crossref API to guess the DOI for an article based on the title and authors
"""
with shelve.open("crossref_cache.db") as cache:
if 'title' not in article or not article['title']:
self.logger.warning("No title found for article, can't guess DOI")
return None
title = article['title']
author = article['author']
if title in cache:
self.logger.info(f"Found DOI {cache[title]} in cache for title: {title}")
return cache[title]
# Construct query URL for Crossref API
base_url = "https://api.crossref.org/works"
params = {
"query.query.bibliographic": f"{title}",
"query.author": f"{author}",
"sort": "relevance",
"rows": 10, # Get top 10 matches
"select": "DOI,title,author",
}
try:
self.logger.debug(f"Querying Crossref for title: {title}")
response = requests.get(base_url, params=params)
response.raise_for_status()
data = response.json()
if data["message"]["total-results"] == 0:
self.logger.debug(f"No DOI found for: {title}")
return None
# Get all matches and find the best one using fuzzy matching
items = data["message"]["items"]
if items:
self.logger.debug(f"Found {len(items)} potential matches for title: {title}")
best_match = None
best_score = 0
threshold = 0.8 # Minimum similarity score to accept a match
for item in items:
if "title" in item and item["title"]:
item_title = item["title"][0]
# Calculate similarity score
score = SequenceMatcher(None, title.lower(), item_title.lower()).ratio()
logger.debug(f"==== '{title}' == '{item['title'][0]}'??? ==> {score:.2f}")
if score > best_score:
best_score = score
best_match = item
if best_match and best_score >= threshold:
doi = best_match.get("DOI")
authors_string = str(best_match.get("author", ""))
authors_last_name = article['author'].split()[-1]
if doi and authors_last_name in authors_string:
self.logger.info(f"Found DOI {doi} for title: {title} (match score: {best_score:.2f})")
cache[title] = doi
return doi
else:
self.logger.warning(f"DOI found but author {authors_last_name} not in authors list or DOI missing")
else:
self.logger.warning(f"No good title match found. Best score was {best_score:.2f}, below threshold {threshold}")
self.logger.warning(f" '{title}' != '{best_match['title'][0]}' (score: {best_score:.2f})")
return None
except Exception as e:
self.logger.warning(f"Error guessing DOI: {e}")
return None
def _retrieve_bibtex_from_dois(self):
if self.df is None:
self.logger.warning(f"no dataframe found for {self.name}, can't continue")
return
doi2bibber = doi2bib()
# iteratre over all rows in the dataframe self.df
for index, row in self.df.iterrows():
doi = row['External DOI']
# Check if DOI is in valid format
if doi and isinstance(doi, str):
# Basic DOI validation - should start with 10. followed by numbers/dots/hyphens
if not doi.startswith('10.') or not len(doi.split('/', 1)) == 2:
self.logger.warning(f"Invalid DOI format: {doi}, will try to guess")
doi = None
else:
self.logger.info(f"No DOI defined in record for article, will try to guess")
doi = None
if doi is None:
doi = self._guess_doi(row)
if doi is None:
self.logger.debug(f"Unable to guess DOI for article, no option left but to skip it")
continue
self.logger.info(f"Guessed DOI for article: {doi}, updating dataframe")
self.df.at[index, 'External DOI'] = doi
try:
bibtex = doi2bibber.get_bibtex_entry(doi)
# Update the dataframe with the bibtex information
if bibtex is not None:
self.df.at[index, 'bibtex'] = bibtex
self.df.at[index, 'bibtex_str'] = doi2bibber.entries_to_str([bibtex])
self.logger.info(f"got bibtex for {doi}")
else:
self.logger.warning(f"Couldn't get bibtex for {doi}")
except Exception as e:
self.logger.warning(f"Failed to get bibtex for {doi}: {e}")
def _flatten(self):
new_articles = []
for a in self.articles:
new_articles.append(flatten(a, reducer='path'))
self.articles = new_articles
def retrieve(self, use_cache=True):
self._retrieve_figshare(use_cache=use_cache)
self._remove_non_repository()
self._retrieve_details()
self._custom_fields_to_dicts()
self._flatten()
self._create_dataframe()
self._retrieve_bibtex_from_dois()
def _create_dataframe(self):
if len(self.articles) == 0:
self.logger.warning(f"no articles found for {self.name}, can't create dataframe")
self.df = None
return
self.df = pd.DataFrame.from_dict(self.articles)
# add column with author name
self.df['author'] = self.name
# add column with online date (as datetime object)
self.df['online_date'] = pd.to_datetime(self.df['timeline/firstOnline'], utc=True)
# add column with online year
self.df['online_year'] = self.df['online_date'].apply(
lambda x: x.year
)
# add column with external DOI, parsed from custom_fields
self.df['External DOI'] = self.df['details/custom_fields/External DOI'].apply(
lambda x: re.sub(r'^(?:https?://doi\.org/|doi:)', '', x[0], flags=re.IGNORECASE).replace('doi:','')
if isinstance(x, list) and len(x) > 0 else None
)
return self.df
def doi2bibtex_test():
doi = "10.1109/MRA.2023.3296983"
doi2bibber = doi2bib()
bibtex = doi2bibber.get_bibtex_entry(doi)
print(doi2bibber.entries_to_str([bibtex]))
def parse_args():
"""Parse command-line arguments."""
parser = argparse.ArgumentParser(
description="Process publications from FigShare repository for specified authors.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument('-a', '--authors', nargs='+',
help='List of author names to process')
parser.add_argument('-f', '--authors-file', type=str,
help='Path to file containing list of authors (one per line)')
parser.add_argument('-s', '--since', type=str, default='2021-01-01',
help='Process only publications since this date (YYYY-MM-DD)')
parser.add_argument('-o', '--output', type=str, default='figshare_articles.csv',
help='Output CSV filename for publications, without duplicates')
parser.add_argument('-O', '--output-all', type=str, default='figshare_articles_all.csv',
help='Output CSV filename for all publications by authors (includes duplicates when multiple authors per output)')
# parser.add_argument('-r', '--recent-output', type=str, default='figshare_articles_recent.csv',
# help='Output CSV filename for publications since specified date')
parser.add_argument('--force-refresh', action='store_true',
help='Force refresh data instead of loading from cache')
parser.add_argument('--debug', action='store_true',
help='Enable debug logging')
return parser.parse_args()
def load_authors_from_file(filename):
"""Load author names from a file, one per line."""
try:
with open(filename, 'r') as f:
return [line.strip() for line in f if line.strip()]
except Exception as e:
logger.error(f"Error loading authors from file {filename}: {e}")
return []
def figshare_processing():
"""
Process FigShare publications for specified authors.
This function:
1. Retrieves publication data for each author from FigShare
2. Combines all publications into a single dataset
3. Removes duplicates while preserving author information
4. Filters publications by date if specified
5. Exports results to CSV files
"""
args = parse_args()
if args.debug:
logger.setLevel(DEBUG)
# Get list of authors
authors_list = []
if args.authors:
authors_list.extend(args.authors)
if args.authors_file:
authors_list.extend(load_authors_from_file(args.authors_file))
# Use default authors if none specified
if not authors_list:
authors_list = [
"Marc Hanheide", "Marcello Calisti", "Grzegorz Cielniak",
"Simon Parsons", "Elizabeth Sklar", "Paul Baxter",
"Petra Bosilj", "Heriberto Cuayahuitl", "Gautham Das",
"Francesco Del Duchetto", "Charles Fox", "Leonardo Guevara",
"Helen Harman", "Mohammed Al-Khafajiy", "Alexandr Klimchik",
"Riccardo Polvara", "Athanasios Polydoros", "Zied Tayeb",
"Sepehr Maleki", "Junfeng Gao", "Tom Duckett", "Mini Rai",
"Amir Ghalamzan Esfahani"
]
logger.info(f"Using default list of {len(authors_list)} authors")
else:
logger.info(f"Processing {len(authors_list)} authors from command line/file")
authors = {}
all_articles = []
df_all = None
for author_name in authors_list:
logger.info(f"*** Processing {author_name}...")
authors[author_name] = Author(author_name, debug=args.debug)
cache_exists = os.path.exists(f"{author_name}.db")
if cache_exists and not args.force_refresh:
logger.info(f"Loading cached data for {author_name}")
authors[author_name].load()
else:
logger.info(f"Retrieving data for {author_name}")
authors[author_name].retrieve(not args.force_refresh)
authors[author_name].save()
if authors[author_name].df is not None:
if df_all is None:
df_all = authors[author_name].df
else:
df_all = pd.concat([df_all, authors[author_name].df])
all_articles.extend(authors[author_name].articles)
authors[author_name].df.to_csv(f"{author_name}.csv", index=False, encoding='utf-8')
bibtex_filename = f"{author_name}.bib"
bibtex = BibDatabase()
bibtex.entries = [entry for entry in authors[author_name].df['bibtex'].tolist() if isinstance(entry, dict)]
# Process all entries in the bibtex database and remove any duplicates based on ID
unique_entries = {}
for entry in authors[author_name].df['bibtex'].tolist():
if isinstance(entry, dict) and 'ID' in entry:
# Use ID as the key to avoid duplicates
unique_entries[entry['ID']] = entry
elif entry is not None:
logger.debug(f"Skipping entry without ID: {entry}")
logger.info(f"Reduced from {len(authors[author_name].df['bibtex'].dropna())} to {len(unique_entries)} unique bibtex entries")
# Replace the entries with the unique ones
bibtex.entries = list(unique_entries.values())
with open(bibtex_filename, 'w') as f:
f.write(bibtexparser.dumps(bibtex))
logger.info(f"Saved bibtex entries to {bibtex_filename}")
else:
logger.warning(f"No data found for {author_name}")
if df_all is None or len(df_all) == 0:
logger.error("No publication data found. Exiting.")
return
logger.info(f"Total number of articles before deduplication: {len(df_all)}")
# Group by ID and aggregate authors into lists
grouped = df_all.groupby('id').agg({
'author': lambda x: list(set(x)) # Use set to remove duplicate authors
})
# Filter the original dataframe to keep only one row per ID
deduplicated_df = df_all.drop_duplicates(subset=['id'], keep='first')
# Add the aggregated authors list as a new column
deduplicated_df = deduplicated_df.set_index('id')
deduplicated_df['authors'] = grouped['author']
deduplicated_df = deduplicated_df.reset_index()
# Convert authors list to comma-separated string
deduplicated_df['authors'] = deduplicated_df['authors'].apply(lambda authors: ', '.join(authors))
logger.info(f"Total number of articles after deduplication: {len(deduplicated_df)}")
# export bibtex file
bibtex_filename = "lcas.bib"
# with open(bibtex_filename, 'w') as f:
# for index, row in deduplicated_df.iterrows():
# if 'bibtex_str' in row and isinstance(row['bibtex_str'], str):
# f.write(row['bibtex_str'])
# f.write("\n\n")
# logger.info(f"Saved bibtex entries to {bibtex_filename}")
bibtex = BibDatabase()
bibtex.entries = [entry for entry in deduplicated_df['bibtex'].tolist() if isinstance(entry, dict)]
# Process all entries in the bibtex database and remove any duplicates based on ID
unique_entries = {}
for entry in bibtex.entries:
if entry and 'ID' in entry:
# Use ID as the key to avoid duplicates
unique_entries[entry['ID']] = entry
else:
logger.debug(f"Skipping entry without ID: {entry}")
logger.info(f"Reduced from {len(bibtex.entries)} to {len(unique_entries)} unique bibtex entries")
# Replace the entries with the unique ones
bibtex.entries = list(unique_entries.values())
with open(bibtex_filename, 'w') as f:
f.write(bibtexparser.dumps(bibtex))
logger.info(f"Saved bibtex entries to {bibtex_filename}")
# Save all data to CSV
deduplicated_df.to_csv(args.output, index=False, encoding='utf-8')
logger.info(f"Saved deduplicated articles to {args.output}")
# Save all data to CSV
df_all.to_csv(args.output_all, index=False, encoding='utf-8')
logger.info(f"Saved all articles to {args.output_all}")
# # Parse the since date
# try:
# since_date = pd.Timestamp(datetime.strptime(args.since, '%Y-%m-%d')).tz_localize('UTC')
# filtered_df = deduplicated_df[deduplicated_df['online_date'] > since_date]
# filtered_df.to_csv(args.recent_output, index=False, encoding='utf-8')
# logger.info(f"Saved {len(filtered_df)} articles since {args.since} to {args.recent_output}")
# except ValueError as e:
# logger.error(f"Invalid date format: {e}. Expected YYYY-MM-DD.")
logger.info("Processing complete")
if __name__ == "__main__":
figshare_processing()