forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
200 lines (169 loc) Β· 8.62 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import functools
import os
import random
import time
import numpy as np
import paddle
from metric import MetricReport
from paddle.io import BatchSampler, DataLoader, DistributedBatchSampler
from utils import evaluate, preprocess_function, read_local_dataset
from paddlenlp.data import DataCollatorWithPadding
from paddlenlp.datasets import load_dataset
from paddlenlp.transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
LinearDecayWithWarmup,
)
from paddlenlp.utils.log import logger
# fmt: off
parser = argparse.ArgumentParser()
parser.add_argument('--device', default="gpu", help="Select which device to train model, defaults to gpu.")
parser.add_argument("--dataset_dir", required=True, default=None, type=str, help="Local dataset directory should include train.txt, dev.txt and label.txt")
parser.add_argument("--save_dir", default="./checkpoint", type=str, help="The output directory where the model checkpoints will be written.")
parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded.")
parser.add_argument('--model_name', default="ernie-3.0-medium-zh", help="Select model to train, defaults to ernie-3.0-medium-zh.",
choices=["ernie-1.0-large-zh-cw", "ernie-3.0-xbase-zh", "ernie-3.0-base-zh", "ernie-3.0-medium-zh", "ernie-3.0-micro-zh", "ernie-3.0-mini-zh", "ernie-3.0-nano-zh", "ernie-2.0-base-en", "ernie-2.0-large-en", "ernie-m-base", "ernie-m-large"])
parser.add_argument("--batch_size", default=32, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument("--learning_rate", default=3e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--epochs", default=10, type=int, help="Total number of training epochs to perform.")
parser.add_argument('--early_stop', action='store_true', help='Epoch before early stop.')
parser.add_argument('--early_stop_nums', type=int, default=3, help='Number of epoch before early stop.')
parser.add_argument("--logging_steps", default=5, type=int, help="The interval steps to logging.")
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument('--warmup', action='store_true', help="whether use warmup strategy")
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup steps over the training process.")
parser.add_argument("--init_from_ckpt", type=str, default=None, help="The path of checkpoint to be loaded.")
parser.add_argument("--seed", type=int, default=3, help="random seed for initialization")
parser.add_argument("--train_file", type=str, default="train.txt", help="Train dataset file name")
parser.add_argument("--dev_file", type=str, default="dev.txt", help="Dev dataset file name")
parser.add_argument("--label_file", type=str, default="label.txt", help="Label file name")
args = parser.parse_args()
# fmt: on
def set_seed(seed):
"""
Sets random seed
"""
random.seed(seed)
np.random.seed(seed)
paddle.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
def args_saving():
argsDict = args.__dict__
with open(os.path.join(args.save_dir, "setting.txt"), "w") as f:
f.writelines("------------------ start ------------------" + "\n")
for eachArg, value in argsDict.items():
f.writelines(eachArg + " : " + str(value) + "\n")
f.writelines("------------------- end -------------------")
def train():
"""
Training a hierarchical classification model
"""
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
args_saving()
set_seed(args.seed)
paddle.set_device(args.device)
rank = paddle.distributed.get_rank()
if paddle.distributed.get_world_size() > 1:
paddle.distributed.init_parallel_env()
# load and preprocess dataset
label_list = {}
with open(os.path.join(args.dataset_dir, args.label_file), "r", encoding="utf-8") as f:
for i, line in enumerate(f):
l = line.strip()
label_list[l] = i
train_ds = load_dataset(
read_local_dataset, path=os.path.join(args.dataset_dir, args.train_file), label_list=label_list, lazy=False
)
dev_ds = load_dataset(
read_local_dataset, path=os.path.join(args.dataset_dir, args.dev_file), label_list=label_list, lazy=False
)
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
trans_func = functools.partial(
preprocess_function, tokenizer=tokenizer, max_seq_length=args.max_seq_length, label_nums=len(label_list)
)
train_ds = train_ds.map(trans_func)
dev_ds = dev_ds.map(trans_func)
# batchify dataset
collate_fn = DataCollatorWithPadding(tokenizer)
if paddle.distributed.get_world_size() > 1:
train_batch_sampler = DistributedBatchSampler(train_ds, batch_size=args.batch_size, shuffle=True)
else:
train_batch_sampler = BatchSampler(train_ds, batch_size=args.batch_size, shuffle=True)
dev_batch_sampler = BatchSampler(dev_ds, batch_size=args.batch_size, shuffle=False)
train_data_loader = DataLoader(dataset=train_ds, batch_sampler=train_batch_sampler, collate_fn=collate_fn)
dev_data_loader = DataLoader(dataset=dev_ds, batch_sampler=dev_batch_sampler, collate_fn=collate_fn)
# define model
model = AutoModelForSequenceClassification.from_pretrained(args.model_name, num_classes=len(label_list))
if args.init_from_ckpt and os.path.isfile(args.init_from_ckpt):
state_dict = paddle.load(args.init_from_ckpt)
model.set_dict(state_dict)
model = paddle.DataParallel(model)
num_training_steps = len(train_data_loader) * args.epochs
lr_scheduler = LinearDecayWithWarmup(args.learning_rate, num_training_steps, args.warmup_steps)
# Generate parameter names needed to perform weight decay.
# All bias and LayerNorm parameters are excluded.
decay_params = [p.name for n, p in model.named_parameters() if not any(nd in n for nd in ["bias", "norm"])]
optimizer = paddle.optimizer.AdamW(
learning_rate=lr_scheduler,
parameters=model.parameters(),
weight_decay=args.weight_decay,
apply_decay_param_fun=lambda x: x in decay_params,
)
criterion = paddle.nn.BCEWithLogitsLoss()
metric = MetricReport()
global_step = 0
best_f1_score = 0
early_stop_count = 0
tic_train = time.time()
for epoch in range(1, args.epochs + 1):
if args.early_stop and early_stop_count >= args.early_stop_nums:
logger.info("Early stop!")
break
for step, batch in enumerate(train_data_loader, start=1):
labels = batch.pop("labels")
logits = model(**batch)
loss = criterion(logits, labels)
loss.backward()
optimizer.step()
if args.warmup:
lr_scheduler.step()
optimizer.clear_grad()
global_step += 1
if global_step % args.logging_steps == 0 and rank == 0:
logger.info(
"global step %d, epoch: %d, batch: %d, loss: %.5f, speed: %.2f step/s"
% (global_step, epoch, step, loss, 10 / (time.time() - tic_train))
)
tic_train = time.time()
early_stop_count += 1
micro_f1_score, macro_f1_score = evaluate(model, criterion, metric, dev_data_loader)
save_best_path = args.save_dir
if not os.path.exists(save_best_path):
os.makedirs(save_best_path)
# save models
if macro_f1_score > best_f1_score:
early_stop_count = 0
best_f1_score = macro_f1_score
model._layers.save_pretrained(save_best_path)
tokenizer.save_pretrained(save_best_path)
logger.info("Current best macro f1 score: %.5f" % (best_f1_score))
logger.info("Final best macro f1 score: %.5f" % (best_f1_score))
logger.info("Save best macro f1 text classification model in %s" % (args.save_dir))
if __name__ == "__main__":
train()
print(args.train_file)