-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtest.py
78 lines (62 loc) · 2.49 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import importlib
import json
import os
from typing import Any, Dict, List, Optional, Tuple
import argparse
import pytorch_lightning as pl
import torch
import hydra
torch.set_float32_matmul_precision("high")
from pytorch_lightning import Callback, LightningDataModule, LightningModule, Trainer
from pytorch_lightning.strategies.ddp import DDPStrategy
from omegaconf import DictConfig
from omegaconf import OmegaConf
from pytorch_lightning.utilities import rank_zero_only
@rank_zero_only
def print_only(message: str):
"""Prints a message only on rank 0."""
print(message)
def train(cfg: DictConfig, args) -> Tuple[Dict[str, Any], Dict[str, Any]]:
# instantiate datamodule
print_only(f"Instantiating datamodule <{cfg.datamodule._target_}>")
datamodule: LightningDataModule = hydra.utils.instantiate(cfg.datamodule)
# instantiate decouple model
print_only(f"Instantiating decouple model <{cfg.decouple_model._target_}>")
decouple_model: torch.nn.Module = hydra.utils.instantiate(cfg.decouple_model)
decouple_model.load_state_dict(torch.load(cfg.speechtokenizer_path))
# import pdb; pdb.set_trace()
# instantiate detect model
print(f"Instantiating detect model <{cfg.detect_model._target_}>")
detect_model: torch.nn.Module = hydra.utils.instantiate(cfg.detect_model)
# import pdb; pdb.set_trace()
# instantiate system
print_only(f"Instantiating system <{cfg.system._target_}>")
system: LightningModule = hydra.utils.instantiate(
cfg.system,
decouple_model=decouple_model,
detect_model=detect_model,
)
# instantiate trainer
print_only(f"Instantiating trainer <{cfg.trainer._target_}>")
trainer: Trainer = hydra.utils.instantiate(
cfg.trainer,
strategy=DDPStrategy(find_unused_parameters=True),
)
trainer.test(system, datamodule=datamodule, ckpt_path=args.ckpt_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--conf_dir",
default="local/conf.yml",
help="Full path to save best validation model",
)
parser.add_argument(
"--ckpt_path",
help="Full path to save best validation model",
)
args = parser.parse_args()
cfg = OmegaConf.load(args.conf_dir)
os.makedirs(os.path.join(cfg.exp.dir, cfg.exp.name), exist_ok=True)
# 保存配置到新的文件
OmegaConf.save(cfg, os.path.join(cfg.exp.dir, cfg.exp.name, "config.yaml"))
train(cfg, args)