forked from llvm/llvm-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMemRefToLLVM.cpp
1757 lines (1518 loc) · 73.2 KB
/
MemRefToLLVM.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===- MemRefToLLVM.cpp - MemRef to LLVM dialect conversion ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/MemRefToLLVM/MemRefToLLVM.h"
#include "mlir/Analysis/DataLayoutAnalysis.h"
#include "mlir/Conversion/ConvertToLLVM/ToLLVMInterface.h"
#include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Conversion/LLVMCommon/TypeConverter.h"
#include "mlir/Conversion/MemRefToLLVM/AllocLikeConversion.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMTypes.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/MemRef/Utils/MemRefUtils.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/Pass/Pass.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/Support/MathExtras.h"
#include <optional>
namespace mlir {
#define GEN_PASS_DEF_FINALIZEMEMREFTOLLVMCONVERSIONPASS
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
namespace {
static bool isStaticStrideOrOffset(int64_t strideOrOffset) {
return !ShapedType::isDynamic(strideOrOffset);
}
static FailureOr<LLVM::LLVMFuncOp>
getFreeFn(const LLVMTypeConverter *typeConverter, ModuleOp module) {
bool useGenericFn = typeConverter->getOptions().useGenericFunctions;
if (useGenericFn)
return LLVM::lookupOrCreateGenericFreeFn(module);
return LLVM::lookupOrCreateFreeFn(module);
}
struct AllocOpLowering : public AllocLikeOpLLVMLowering {
AllocOpLowering(const LLVMTypeConverter &converter)
: AllocLikeOpLLVMLowering(memref::AllocOp::getOperationName(),
converter) {}
std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
Location loc, Value sizeBytes,
Operation *op) const override {
return allocateBufferManuallyAlign(
rewriter, loc, sizeBytes, op,
getAlignment(rewriter, loc, cast<memref::AllocOp>(op)));
}
};
struct AlignedAllocOpLowering : public AllocLikeOpLLVMLowering {
AlignedAllocOpLowering(const LLVMTypeConverter &converter)
: AllocLikeOpLLVMLowering(memref::AllocOp::getOperationName(),
converter) {}
std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
Location loc, Value sizeBytes,
Operation *op) const override {
Value ptr = allocateBufferAutoAlign(
rewriter, loc, sizeBytes, op, &defaultLayout,
alignedAllocationGetAlignment(rewriter, loc, cast<memref::AllocOp>(op),
&defaultLayout));
if (!ptr)
return std::make_tuple(Value(), Value());
return std::make_tuple(ptr, ptr);
}
private:
/// Default layout to use in absence of the corresponding analysis.
DataLayout defaultLayout;
};
struct AllocaOpLowering : public AllocLikeOpLLVMLowering {
AllocaOpLowering(const LLVMTypeConverter &converter)
: AllocLikeOpLLVMLowering(memref::AllocaOp::getOperationName(),
converter) {
setRequiresNumElements();
}
/// Allocates the underlying buffer using the right call. `allocatedBytePtr`
/// is set to null for stack allocations. `accessAlignment` is set if
/// alignment is needed post allocation (for eg. in conjunction with malloc).
std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
Location loc, Value size,
Operation *op) const override {
// With alloca, one gets a pointer to the element type right away.
// For stack allocations.
auto allocaOp = cast<memref::AllocaOp>(op);
auto elementType =
typeConverter->convertType(allocaOp.getType().getElementType());
unsigned addrSpace =
*getTypeConverter()->getMemRefAddressSpace(allocaOp.getType());
auto elementPtrType =
LLVM::LLVMPointerType::get(rewriter.getContext(), addrSpace);
auto allocatedElementPtr =
rewriter.create<LLVM::AllocaOp>(loc, elementPtrType, elementType, size,
allocaOp.getAlignment().value_or(0));
return std::make_tuple(allocatedElementPtr, allocatedElementPtr);
}
};
struct AllocaScopeOpLowering
: public ConvertOpToLLVMPattern<memref::AllocaScopeOp> {
using ConvertOpToLLVMPattern<memref::AllocaScopeOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(memref::AllocaScopeOp allocaScopeOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
OpBuilder::InsertionGuard guard(rewriter);
Location loc = allocaScopeOp.getLoc();
// Split the current block before the AllocaScopeOp to create the inlining
// point.
auto *currentBlock = rewriter.getInsertionBlock();
auto *remainingOpsBlock =
rewriter.splitBlock(currentBlock, rewriter.getInsertionPoint());
Block *continueBlock;
if (allocaScopeOp.getNumResults() == 0) {
continueBlock = remainingOpsBlock;
} else {
continueBlock = rewriter.createBlock(
remainingOpsBlock, allocaScopeOp.getResultTypes(),
SmallVector<Location>(allocaScopeOp->getNumResults(),
allocaScopeOp.getLoc()));
rewriter.create<LLVM::BrOp>(loc, ValueRange(), remainingOpsBlock);
}
// Inline body region.
Block *beforeBody = &allocaScopeOp.getBodyRegion().front();
Block *afterBody = &allocaScopeOp.getBodyRegion().back();
rewriter.inlineRegionBefore(allocaScopeOp.getBodyRegion(), continueBlock);
// Save stack and then branch into the body of the region.
rewriter.setInsertionPointToEnd(currentBlock);
auto stackSaveOp =
rewriter.create<LLVM::StackSaveOp>(loc, getVoidPtrType());
rewriter.create<LLVM::BrOp>(loc, ValueRange(), beforeBody);
// Replace the alloca_scope return with a branch that jumps out of the body.
// Stack restore before leaving the body region.
rewriter.setInsertionPointToEnd(afterBody);
auto returnOp =
cast<memref::AllocaScopeReturnOp>(afterBody->getTerminator());
auto branchOp = rewriter.replaceOpWithNewOp<LLVM::BrOp>(
returnOp, returnOp.getResults(), continueBlock);
// Insert stack restore before jumping out the body of the region.
rewriter.setInsertionPoint(branchOp);
rewriter.create<LLVM::StackRestoreOp>(loc, stackSaveOp);
// Replace the op with values return from the body region.
rewriter.replaceOp(allocaScopeOp, continueBlock->getArguments());
return success();
}
};
struct AssumeAlignmentOpLowering
: public ConvertOpToLLVMPattern<memref::AssumeAlignmentOp> {
using ConvertOpToLLVMPattern<
memref::AssumeAlignmentOp>::ConvertOpToLLVMPattern;
explicit AssumeAlignmentOpLowering(const LLVMTypeConverter &converter)
: ConvertOpToLLVMPattern<memref::AssumeAlignmentOp>(converter) {}
LogicalResult
matchAndRewrite(memref::AssumeAlignmentOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Value memref = adaptor.getMemref();
unsigned alignment = op.getAlignment();
auto loc = op.getLoc();
auto srcMemRefType = cast<MemRefType>(op.getMemref().getType());
Value ptr = getStridedElementPtr(loc, srcMemRefType, memref, /*indices=*/{},
rewriter);
// Emit llvm.assume(true) ["align"(memref, alignment)].
// This is more direct than ptrtoint-based checks, is explicitly supported,
// and works with non-integral address spaces.
Value trueCond =
rewriter.create<LLVM::ConstantOp>(loc, rewriter.getBoolAttr(true));
Value alignmentConst =
createIndexAttrConstant(rewriter, loc, getIndexType(), alignment);
rewriter.create<LLVM::AssumeOp>(loc, trueCond, LLVM::AssumeAlignTag(), ptr,
alignmentConst);
rewriter.eraseOp(op);
return success();
}
};
// A `dealloc` is converted into a call to `free` on the underlying data buffer.
// The memref descriptor being an SSA value, there is no need to clean it up
// in any way.
struct DeallocOpLowering : public ConvertOpToLLVMPattern<memref::DeallocOp> {
using ConvertOpToLLVMPattern<memref::DeallocOp>::ConvertOpToLLVMPattern;
explicit DeallocOpLowering(const LLVMTypeConverter &converter)
: ConvertOpToLLVMPattern<memref::DeallocOp>(converter) {}
LogicalResult
matchAndRewrite(memref::DeallocOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Insert the `free` declaration if it is not already present.
FailureOr<LLVM::LLVMFuncOp> freeFunc =
getFreeFn(getTypeConverter(), op->getParentOfType<ModuleOp>());
if (failed(freeFunc))
return failure();
Value allocatedPtr;
if (auto unrankedTy =
llvm::dyn_cast<UnrankedMemRefType>(op.getMemref().getType())) {
auto elementPtrTy = LLVM::LLVMPointerType::get(
rewriter.getContext(), unrankedTy.getMemorySpaceAsInt());
allocatedPtr = UnrankedMemRefDescriptor::allocatedPtr(
rewriter, op.getLoc(),
UnrankedMemRefDescriptor(adaptor.getMemref())
.memRefDescPtr(rewriter, op.getLoc()),
elementPtrTy);
} else {
allocatedPtr = MemRefDescriptor(adaptor.getMemref())
.allocatedPtr(rewriter, op.getLoc());
}
rewriter.replaceOpWithNewOp<LLVM::CallOp>(op, freeFunc.value(),
allocatedPtr);
return success();
}
};
// A `dim` is converted to a constant for static sizes and to an access to the
// size stored in the memref descriptor for dynamic sizes.
struct DimOpLowering : public ConvertOpToLLVMPattern<memref::DimOp> {
using ConvertOpToLLVMPattern<memref::DimOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(memref::DimOp dimOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type operandType = dimOp.getSource().getType();
if (isa<UnrankedMemRefType>(operandType)) {
FailureOr<Value> extractedSize = extractSizeOfUnrankedMemRef(
operandType, dimOp, adaptor.getOperands(), rewriter);
if (failed(extractedSize))
return failure();
rewriter.replaceOp(dimOp, {*extractedSize});
return success();
}
if (isa<MemRefType>(operandType)) {
rewriter.replaceOp(
dimOp, {extractSizeOfRankedMemRef(operandType, dimOp,
adaptor.getOperands(), rewriter)});
return success();
}
llvm_unreachable("expected MemRefType or UnrankedMemRefType");
}
private:
FailureOr<Value>
extractSizeOfUnrankedMemRef(Type operandType, memref::DimOp dimOp,
OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Location loc = dimOp.getLoc();
auto unrankedMemRefType = cast<UnrankedMemRefType>(operandType);
auto scalarMemRefType =
MemRefType::get({}, unrankedMemRefType.getElementType());
FailureOr<unsigned> maybeAddressSpace =
getTypeConverter()->getMemRefAddressSpace(unrankedMemRefType);
if (failed(maybeAddressSpace)) {
dimOp.emitOpError("memref memory space must be convertible to an integer "
"address space");
return failure();
}
unsigned addressSpace = *maybeAddressSpace;
// Extract pointer to the underlying ranked descriptor and bitcast it to a
// memref<element_type> descriptor pointer to minimize the number of GEP
// operations.
UnrankedMemRefDescriptor unrankedDesc(adaptor.getSource());
Value underlyingRankedDesc = unrankedDesc.memRefDescPtr(rewriter, loc);
Type elementType = typeConverter->convertType(scalarMemRefType);
// Get pointer to offset field of memref<element_type> descriptor.
auto indexPtrTy =
LLVM::LLVMPointerType::get(rewriter.getContext(), addressSpace);
Value offsetPtr = rewriter.create<LLVM::GEPOp>(
loc, indexPtrTy, elementType, underlyingRankedDesc,
ArrayRef<LLVM::GEPArg>{0, 2});
// The size value that we have to extract can be obtained using GEPop with
// `dimOp.index() + 1` index argument.
Value idxPlusOne = rewriter.create<LLVM::AddOp>(
loc, createIndexAttrConstant(rewriter, loc, getIndexType(), 1),
adaptor.getIndex());
Value sizePtr = rewriter.create<LLVM::GEPOp>(
loc, indexPtrTy, getTypeConverter()->getIndexType(), offsetPtr,
idxPlusOne);
return rewriter
.create<LLVM::LoadOp>(loc, getTypeConverter()->getIndexType(), sizePtr)
.getResult();
}
std::optional<int64_t> getConstantDimIndex(memref::DimOp dimOp) const {
if (auto idx = dimOp.getConstantIndex())
return idx;
if (auto constantOp = dimOp.getIndex().getDefiningOp<LLVM::ConstantOp>())
return cast<IntegerAttr>(constantOp.getValue()).getValue().getSExtValue();
return std::nullopt;
}
Value extractSizeOfRankedMemRef(Type operandType, memref::DimOp dimOp,
OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Location loc = dimOp.getLoc();
// Take advantage if index is constant.
MemRefType memRefType = cast<MemRefType>(operandType);
Type indexType = getIndexType();
if (std::optional<int64_t> index = getConstantDimIndex(dimOp)) {
int64_t i = *index;
if (i >= 0 && i < memRefType.getRank()) {
if (memRefType.isDynamicDim(i)) {
// extract dynamic size from the memref descriptor.
MemRefDescriptor descriptor(adaptor.getSource());
return descriptor.size(rewriter, loc, i);
}
// Use constant for static size.
int64_t dimSize = memRefType.getDimSize(i);
return createIndexAttrConstant(rewriter, loc, indexType, dimSize);
}
}
Value index = adaptor.getIndex();
int64_t rank = memRefType.getRank();
MemRefDescriptor memrefDescriptor(adaptor.getSource());
return memrefDescriptor.size(rewriter, loc, index, rank);
}
};
/// Common base for load and store operations on MemRefs. Restricts the match
/// to supported MemRef types. Provides functionality to emit code accessing a
/// specific element of the underlying data buffer.
template <typename Derived>
struct LoadStoreOpLowering : public ConvertOpToLLVMPattern<Derived> {
using ConvertOpToLLVMPattern<Derived>::ConvertOpToLLVMPattern;
using ConvertOpToLLVMPattern<Derived>::isConvertibleAndHasIdentityMaps;
using Base = LoadStoreOpLowering<Derived>;
LogicalResult match(Derived op) const override {
MemRefType type = op.getMemRefType();
return isConvertibleAndHasIdentityMaps(type) ? success() : failure();
}
};
/// Wrap a llvm.cmpxchg operation in a while loop so that the operation can be
/// retried until it succeeds in atomically storing a new value into memory.
///
/// +---------------------------------+
/// | <code before the AtomicRMWOp> |
/// | <compute initial %loaded> |
/// | cf.br loop(%loaded) |
/// +---------------------------------+
/// |
/// -------| |
/// | v v
/// | +--------------------------------+
/// | | loop(%loaded): |
/// | | <body contents> |
/// | | %pair = cmpxchg |
/// | | %ok = %pair[0] |
/// | | %new = %pair[1] |
/// | | cf.cond_br %ok, end, loop(%new) |
/// | +--------------------------------+
/// | | |
/// |----------- |
/// v
/// +--------------------------------+
/// | end: |
/// | <code after the AtomicRMWOp> |
/// +--------------------------------+
///
struct GenericAtomicRMWOpLowering
: public LoadStoreOpLowering<memref::GenericAtomicRMWOp> {
using Base::Base;
LogicalResult
matchAndRewrite(memref::GenericAtomicRMWOp atomicOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = atomicOp.getLoc();
Type valueType = typeConverter->convertType(atomicOp.getResult().getType());
// Split the block into initial, loop, and ending parts.
auto *initBlock = rewriter.getInsertionBlock();
auto *loopBlock = rewriter.splitBlock(initBlock, Block::iterator(atomicOp));
loopBlock->addArgument(valueType, loc);
auto *endBlock =
rewriter.splitBlock(loopBlock, Block::iterator(atomicOp)++);
// Compute the loaded value and branch to the loop block.
rewriter.setInsertionPointToEnd(initBlock);
auto memRefType = cast<MemRefType>(atomicOp.getMemref().getType());
auto dataPtr = getStridedElementPtr(loc, memRefType, adaptor.getMemref(),
adaptor.getIndices(), rewriter);
Value init = rewriter.create<LLVM::LoadOp>(
loc, typeConverter->convertType(memRefType.getElementType()), dataPtr);
rewriter.create<LLVM::BrOp>(loc, init, loopBlock);
// Prepare the body of the loop block.
rewriter.setInsertionPointToStart(loopBlock);
// Clone the GenericAtomicRMWOp region and extract the result.
auto loopArgument = loopBlock->getArgument(0);
IRMapping mapping;
mapping.map(atomicOp.getCurrentValue(), loopArgument);
Block &entryBlock = atomicOp.body().front();
for (auto &nestedOp : entryBlock.without_terminator()) {
Operation *clone = rewriter.clone(nestedOp, mapping);
mapping.map(nestedOp.getResults(), clone->getResults());
}
Value result = mapping.lookup(entryBlock.getTerminator()->getOperand(0));
// Prepare the epilog of the loop block.
// Append the cmpxchg op to the end of the loop block.
auto successOrdering = LLVM::AtomicOrdering::acq_rel;
auto failureOrdering = LLVM::AtomicOrdering::monotonic;
auto cmpxchg = rewriter.create<LLVM::AtomicCmpXchgOp>(
loc, dataPtr, loopArgument, result, successOrdering, failureOrdering);
// Extract the %new_loaded and %ok values from the pair.
Value newLoaded = rewriter.create<LLVM::ExtractValueOp>(loc, cmpxchg, 0);
Value ok = rewriter.create<LLVM::ExtractValueOp>(loc, cmpxchg, 1);
// Conditionally branch to the end or back to the loop depending on %ok.
rewriter.create<LLVM::CondBrOp>(loc, ok, endBlock, ArrayRef<Value>(),
loopBlock, newLoaded);
rewriter.setInsertionPointToEnd(endBlock);
// The 'result' of the atomic_rmw op is the newly loaded value.
rewriter.replaceOp(atomicOp, {newLoaded});
return success();
}
};
/// Returns the LLVM type of the global variable given the memref type `type`.
static Type
convertGlobalMemrefTypeToLLVM(MemRefType type,
const LLVMTypeConverter &typeConverter) {
// LLVM type for a global memref will be a multi-dimension array. For
// declarations or uninitialized global memrefs, we can potentially flatten
// this to a 1D array. However, for memref.global's with an initial value,
// we do not intend to flatten the ElementsAttribute when going from std ->
// LLVM dialect, so the LLVM type needs to me a multi-dimension array.
Type elementType = typeConverter.convertType(type.getElementType());
Type arrayTy = elementType;
// Shape has the outermost dim at index 0, so need to walk it backwards
for (int64_t dim : llvm::reverse(type.getShape()))
arrayTy = LLVM::LLVMArrayType::get(arrayTy, dim);
return arrayTy;
}
/// GlobalMemrefOp is lowered to a LLVM Global Variable.
struct GlobalMemrefOpLowering
: public ConvertOpToLLVMPattern<memref::GlobalOp> {
using ConvertOpToLLVMPattern<memref::GlobalOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(memref::GlobalOp global, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
MemRefType type = global.getType();
if (!isConvertibleAndHasIdentityMaps(type))
return failure();
Type arrayTy = convertGlobalMemrefTypeToLLVM(type, *getTypeConverter());
LLVM::Linkage linkage =
global.isPublic() ? LLVM::Linkage::External : LLVM::Linkage::Private;
Attribute initialValue = nullptr;
if (!global.isExternal() && !global.isUninitialized()) {
auto elementsAttr = llvm::cast<ElementsAttr>(*global.getInitialValue());
initialValue = elementsAttr;
// For scalar memrefs, the global variable created is of the element type,
// so unpack the elements attribute to extract the value.
if (type.getRank() == 0)
initialValue = elementsAttr.getSplatValue<Attribute>();
}
uint64_t alignment = global.getAlignment().value_or(0);
FailureOr<unsigned> addressSpace =
getTypeConverter()->getMemRefAddressSpace(type);
if (failed(addressSpace))
return global.emitOpError(
"memory space cannot be converted to an integer address space");
auto newGlobal = rewriter.replaceOpWithNewOp<LLVM::GlobalOp>(
global, arrayTy, global.getConstant(), linkage, global.getSymName(),
initialValue, alignment, *addressSpace);
if (!global.isExternal() && global.isUninitialized()) {
rewriter.createBlock(&newGlobal.getInitializerRegion());
Value undef[] = {
rewriter.create<LLVM::UndefOp>(global.getLoc(), arrayTy)};
rewriter.create<LLVM::ReturnOp>(global.getLoc(), undef);
}
return success();
}
};
/// GetGlobalMemrefOp is lowered into a Memref descriptor with the pointer to
/// the first element stashed into the descriptor. This reuses
/// `AllocLikeOpLowering` to reuse the Memref descriptor construction.
struct GetGlobalMemrefOpLowering : public AllocLikeOpLLVMLowering {
GetGlobalMemrefOpLowering(const LLVMTypeConverter &converter)
: AllocLikeOpLLVMLowering(memref::GetGlobalOp::getOperationName(),
converter) {}
/// Buffer "allocation" for memref.get_global op is getting the address of
/// the global variable referenced.
std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
Location loc, Value sizeBytes,
Operation *op) const override {
auto getGlobalOp = cast<memref::GetGlobalOp>(op);
MemRefType type = cast<MemRefType>(getGlobalOp.getResult().getType());
// This is called after a type conversion, which would have failed if this
// call fails.
FailureOr<unsigned> maybeAddressSpace =
getTypeConverter()->getMemRefAddressSpace(type);
if (failed(maybeAddressSpace))
return std::make_tuple(Value(), Value());
unsigned memSpace = *maybeAddressSpace;
Type arrayTy = convertGlobalMemrefTypeToLLVM(type, *getTypeConverter());
auto ptrTy = LLVM::LLVMPointerType::get(rewriter.getContext(), memSpace);
auto addressOf =
rewriter.create<LLVM::AddressOfOp>(loc, ptrTy, getGlobalOp.getName());
// Get the address of the first element in the array by creating a GEP with
// the address of the GV as the base, and (rank + 1) number of 0 indices.
auto gep = rewriter.create<LLVM::GEPOp>(
loc, ptrTy, arrayTy, addressOf,
SmallVector<LLVM::GEPArg>(type.getRank() + 1, 0));
// We do not expect the memref obtained using `memref.get_global` to be
// ever deallocated. Set the allocated pointer to be known bad value to
// help debug if that ever happens.
auto intPtrType = getIntPtrType(memSpace);
Value deadBeefConst =
createIndexAttrConstant(rewriter, op->getLoc(), intPtrType, 0xdeadbeef);
auto deadBeefPtr =
rewriter.create<LLVM::IntToPtrOp>(loc, ptrTy, deadBeefConst);
// Both allocated and aligned pointers are same. We could potentially stash
// a nullptr for the allocated pointer since we do not expect any dealloc.
return std::make_tuple(deadBeefPtr, gep);
}
};
// Load operation is lowered to obtaining a pointer to the indexed element
// and loading it.
struct LoadOpLowering : public LoadStoreOpLowering<memref::LoadOp> {
using Base::Base;
LogicalResult
matchAndRewrite(memref::LoadOp loadOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto type = loadOp.getMemRefType();
Value dataPtr =
getStridedElementPtr(loadOp.getLoc(), type, adaptor.getMemref(),
adaptor.getIndices(), rewriter);
rewriter.replaceOpWithNewOp<LLVM::LoadOp>(
loadOp, typeConverter->convertType(type.getElementType()), dataPtr, 0,
false, loadOp.getNontemporal());
return success();
}
};
// Store operation is lowered to obtaining a pointer to the indexed element,
// and storing the given value to it.
struct StoreOpLowering : public LoadStoreOpLowering<memref::StoreOp> {
using Base::Base;
LogicalResult
matchAndRewrite(memref::StoreOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto type = op.getMemRefType();
Value dataPtr = getStridedElementPtr(op.getLoc(), type, adaptor.getMemref(),
adaptor.getIndices(), rewriter);
rewriter.replaceOpWithNewOp<LLVM::StoreOp>(op, adaptor.getValue(), dataPtr,
0, false, op.getNontemporal());
return success();
}
};
// The prefetch operation is lowered in a way similar to the load operation
// except that the llvm.prefetch operation is used for replacement.
struct PrefetchOpLowering : public LoadStoreOpLowering<memref::PrefetchOp> {
using Base::Base;
LogicalResult
matchAndRewrite(memref::PrefetchOp prefetchOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto type = prefetchOp.getMemRefType();
auto loc = prefetchOp.getLoc();
Value dataPtr = getStridedElementPtr(loc, type, adaptor.getMemref(),
adaptor.getIndices(), rewriter);
// Replace with llvm.prefetch.
IntegerAttr isWrite = rewriter.getI32IntegerAttr(prefetchOp.getIsWrite());
IntegerAttr localityHint = prefetchOp.getLocalityHintAttr();
IntegerAttr isData =
rewriter.getI32IntegerAttr(prefetchOp.getIsDataCache());
rewriter.replaceOpWithNewOp<LLVM::Prefetch>(prefetchOp, dataPtr, isWrite,
localityHint, isData);
return success();
}
};
struct RankOpLowering : public ConvertOpToLLVMPattern<memref::RankOp> {
using ConvertOpToLLVMPattern<memref::RankOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(memref::RankOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Type operandType = op.getMemref().getType();
if (dyn_cast<UnrankedMemRefType>(operandType)) {
UnrankedMemRefDescriptor desc(adaptor.getMemref());
rewriter.replaceOp(op, {desc.rank(rewriter, loc)});
return success();
}
if (auto rankedMemRefType = dyn_cast<MemRefType>(operandType)) {
Type indexType = getIndexType();
rewriter.replaceOp(op,
{createIndexAttrConstant(rewriter, loc, indexType,
rankedMemRefType.getRank())});
return success();
}
return failure();
}
};
struct MemRefCastOpLowering : public ConvertOpToLLVMPattern<memref::CastOp> {
using ConvertOpToLLVMPattern<memref::CastOp>::ConvertOpToLLVMPattern;
LogicalResult match(memref::CastOp memRefCastOp) const override {
Type srcType = memRefCastOp.getOperand().getType();
Type dstType = memRefCastOp.getType();
// memref::CastOp reduce to bitcast in the ranked MemRef case and can be
// used for type erasure. For now they must preserve underlying element type
// and require source and result type to have the same rank. Therefore,
// perform a sanity check that the underlying structs are the same. Once op
// semantics are relaxed we can revisit.
if (isa<MemRefType>(srcType) && isa<MemRefType>(dstType))
return success(typeConverter->convertType(srcType) ==
typeConverter->convertType(dstType));
// At least one of the operands is unranked type
assert(isa<UnrankedMemRefType>(srcType) ||
isa<UnrankedMemRefType>(dstType));
// Unranked to unranked cast is disallowed
return !(isa<UnrankedMemRefType>(srcType) &&
isa<UnrankedMemRefType>(dstType))
? success()
: failure();
}
void rewrite(memref::CastOp memRefCastOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto srcType = memRefCastOp.getOperand().getType();
auto dstType = memRefCastOp.getType();
auto targetStructType = typeConverter->convertType(memRefCastOp.getType());
auto loc = memRefCastOp.getLoc();
// For ranked/ranked case, just keep the original descriptor.
if (isa<MemRefType>(srcType) && isa<MemRefType>(dstType))
return rewriter.replaceOp(memRefCastOp, {adaptor.getSource()});
if (isa<MemRefType>(srcType) && isa<UnrankedMemRefType>(dstType)) {
// Casting ranked to unranked memref type
// Set the rank in the destination from the memref type
// Allocate space on the stack and copy the src memref descriptor
// Set the ptr in the destination to the stack space
auto srcMemRefType = cast<MemRefType>(srcType);
int64_t rank = srcMemRefType.getRank();
// ptr = AllocaOp sizeof(MemRefDescriptor)
auto ptr = getTypeConverter()->promoteOneMemRefDescriptor(
loc, adaptor.getSource(), rewriter);
// rank = ConstantOp srcRank
auto rankVal = rewriter.create<LLVM::ConstantOp>(
loc, getIndexType(), rewriter.getIndexAttr(rank));
// undef = UndefOp
UnrankedMemRefDescriptor memRefDesc =
UnrankedMemRefDescriptor::undef(rewriter, loc, targetStructType);
// d1 = InsertValueOp undef, rank, 0
memRefDesc.setRank(rewriter, loc, rankVal);
// d2 = InsertValueOp d1, ptr, 1
memRefDesc.setMemRefDescPtr(rewriter, loc, ptr);
rewriter.replaceOp(memRefCastOp, (Value)memRefDesc);
} else if (isa<UnrankedMemRefType>(srcType) && isa<MemRefType>(dstType)) {
// Casting from unranked type to ranked.
// The operation is assumed to be doing a correct cast. If the destination
// type mismatches the unranked the type, it is undefined behavior.
UnrankedMemRefDescriptor memRefDesc(adaptor.getSource());
// ptr = ExtractValueOp src, 1
auto ptr = memRefDesc.memRefDescPtr(rewriter, loc);
// struct = LoadOp ptr
auto loadOp = rewriter.create<LLVM::LoadOp>(loc, targetStructType, ptr);
rewriter.replaceOp(memRefCastOp, loadOp.getResult());
} else {
llvm_unreachable("Unsupported unranked memref to unranked memref cast");
}
}
};
/// Pattern to lower a `memref.copy` to llvm.
///
/// For memrefs with identity layouts, the copy is lowered to the llvm
/// `memcpy` intrinsic. For non-identity layouts, the copy is lowered to a call
/// to the generic `MemrefCopyFn`.
struct MemRefCopyOpLowering : public ConvertOpToLLVMPattern<memref::CopyOp> {
using ConvertOpToLLVMPattern<memref::CopyOp>::ConvertOpToLLVMPattern;
LogicalResult
lowerToMemCopyIntrinsic(memref::CopyOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto loc = op.getLoc();
auto srcType = dyn_cast<MemRefType>(op.getSource().getType());
MemRefDescriptor srcDesc(adaptor.getSource());
// Compute number of elements.
Value numElements = rewriter.create<LLVM::ConstantOp>(
loc, getIndexType(), rewriter.getIndexAttr(1));
for (int pos = 0; pos < srcType.getRank(); ++pos) {
auto size = srcDesc.size(rewriter, loc, pos);
numElements = rewriter.create<LLVM::MulOp>(loc, numElements, size);
}
// Get element size.
auto sizeInBytes = getSizeInBytes(loc, srcType.getElementType(), rewriter);
// Compute total.
Value totalSize =
rewriter.create<LLVM::MulOp>(loc, numElements, sizeInBytes);
Type elementType = typeConverter->convertType(srcType.getElementType());
Value srcBasePtr = srcDesc.alignedPtr(rewriter, loc);
Value srcOffset = srcDesc.offset(rewriter, loc);
Value srcPtr = rewriter.create<LLVM::GEPOp>(
loc, srcBasePtr.getType(), elementType, srcBasePtr, srcOffset);
MemRefDescriptor targetDesc(adaptor.getTarget());
Value targetBasePtr = targetDesc.alignedPtr(rewriter, loc);
Value targetOffset = targetDesc.offset(rewriter, loc);
Value targetPtr = rewriter.create<LLVM::GEPOp>(
loc, targetBasePtr.getType(), elementType, targetBasePtr, targetOffset);
rewriter.create<LLVM::MemcpyOp>(loc, targetPtr, srcPtr, totalSize,
/*isVolatile=*/false);
rewriter.eraseOp(op);
return success();
}
LogicalResult
lowerToMemCopyFunctionCall(memref::CopyOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto loc = op.getLoc();
auto srcType = cast<BaseMemRefType>(op.getSource().getType());
auto targetType = cast<BaseMemRefType>(op.getTarget().getType());
// First make sure we have an unranked memref descriptor representation.
auto makeUnranked = [&, this](Value ranked, MemRefType type) {
auto rank = rewriter.create<LLVM::ConstantOp>(loc, getIndexType(),
type.getRank());
auto *typeConverter = getTypeConverter();
auto ptr =
typeConverter->promoteOneMemRefDescriptor(loc, ranked, rewriter);
auto unrankedType =
UnrankedMemRefType::get(type.getElementType(), type.getMemorySpace());
return UnrankedMemRefDescriptor::pack(
rewriter, loc, *typeConverter, unrankedType, ValueRange{rank, ptr});
};
// Save stack position before promoting descriptors
auto stackSaveOp =
rewriter.create<LLVM::StackSaveOp>(loc, getVoidPtrType());
auto srcMemRefType = dyn_cast<MemRefType>(srcType);
Value unrankedSource =
srcMemRefType ? makeUnranked(adaptor.getSource(), srcMemRefType)
: adaptor.getSource();
auto targetMemRefType = dyn_cast<MemRefType>(targetType);
Value unrankedTarget =
targetMemRefType ? makeUnranked(adaptor.getTarget(), targetMemRefType)
: adaptor.getTarget();
// Now promote the unranked descriptors to the stack.
auto one = rewriter.create<LLVM::ConstantOp>(loc, getIndexType(),
rewriter.getIndexAttr(1));
auto promote = [&](Value desc) {
auto ptrType = LLVM::LLVMPointerType::get(rewriter.getContext());
auto allocated =
rewriter.create<LLVM::AllocaOp>(loc, ptrType, desc.getType(), one);
rewriter.create<LLVM::StoreOp>(loc, desc, allocated);
return allocated;
};
auto sourcePtr = promote(unrankedSource);
auto targetPtr = promote(unrankedTarget);
// Derive size from llvm.getelementptr which will account for any
// potential alignment
auto elemSize = getSizeInBytes(loc, srcType.getElementType(), rewriter);
auto copyFn = LLVM::lookupOrCreateMemRefCopyFn(
op->getParentOfType<ModuleOp>(), getIndexType(), sourcePtr.getType());
if (failed(copyFn))
return failure();
rewriter.create<LLVM::CallOp>(loc, copyFn.value(),
ValueRange{elemSize, sourcePtr, targetPtr});
// Restore stack used for descriptors
rewriter.create<LLVM::StackRestoreOp>(loc, stackSaveOp);
rewriter.eraseOp(op);
return success();
}
LogicalResult
matchAndRewrite(memref::CopyOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto srcType = cast<BaseMemRefType>(op.getSource().getType());
auto targetType = cast<BaseMemRefType>(op.getTarget().getType());
auto isContiguousMemrefType = [&](BaseMemRefType type) {
auto memrefType = dyn_cast<mlir::MemRefType>(type);
// We can use memcpy for memrefs if they have an identity layout or are
// contiguous with an arbitrary offset. Ignore empty memrefs, which is a
// special case handled by memrefCopy.
return memrefType &&
(memrefType.getLayout().isIdentity() ||
(memrefType.hasStaticShape() && memrefType.getNumElements() > 0 &&
memref::isStaticShapeAndContiguousRowMajor(memrefType)));
};
if (isContiguousMemrefType(srcType) && isContiguousMemrefType(targetType))
return lowerToMemCopyIntrinsic(op, adaptor, rewriter);
return lowerToMemCopyFunctionCall(op, adaptor, rewriter);
}
};
struct MemorySpaceCastOpLowering
: public ConvertOpToLLVMPattern<memref::MemorySpaceCastOp> {
using ConvertOpToLLVMPattern<
memref::MemorySpaceCastOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(memref::MemorySpaceCastOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Type resultType = op.getDest().getType();
if (auto resultTypeR = dyn_cast<MemRefType>(resultType)) {
auto resultDescType =
cast<LLVM::LLVMStructType>(typeConverter->convertType(resultTypeR));
Type newPtrType = resultDescType.getBody()[0];
SmallVector<Value> descVals;
MemRefDescriptor::unpack(rewriter, loc, adaptor.getSource(), resultTypeR,
descVals);
descVals[0] =
rewriter.create<LLVM::AddrSpaceCastOp>(loc, newPtrType, descVals[0]);
descVals[1] =
rewriter.create<LLVM::AddrSpaceCastOp>(loc, newPtrType, descVals[1]);
Value result = MemRefDescriptor::pack(rewriter, loc, *getTypeConverter(),
resultTypeR, descVals);
rewriter.replaceOp(op, result);
return success();
}
if (auto resultTypeU = dyn_cast<UnrankedMemRefType>(resultType)) {
// Since the type converter won't be doing this for us, get the address
// space.
auto sourceType = cast<UnrankedMemRefType>(op.getSource().getType());
FailureOr<unsigned> maybeSourceAddrSpace =
getTypeConverter()->getMemRefAddressSpace(sourceType);
if (failed(maybeSourceAddrSpace))
return rewriter.notifyMatchFailure(loc,
"non-integer source address space");
unsigned sourceAddrSpace = *maybeSourceAddrSpace;
FailureOr<unsigned> maybeResultAddrSpace =
getTypeConverter()->getMemRefAddressSpace(resultTypeU);
if (failed(maybeResultAddrSpace))
return rewriter.notifyMatchFailure(loc,
"non-integer result address space");
unsigned resultAddrSpace = *maybeResultAddrSpace;
UnrankedMemRefDescriptor sourceDesc(adaptor.getSource());
Value rank = sourceDesc.rank(rewriter, loc);
Value sourceUnderlyingDesc = sourceDesc.memRefDescPtr(rewriter, loc);
// Create and allocate storage for new memref descriptor.
auto result = UnrankedMemRefDescriptor::undef(
rewriter, loc, typeConverter->convertType(resultTypeU));
result.setRank(rewriter, loc, rank);
SmallVector<Value, 1> sizes;
UnrankedMemRefDescriptor::computeSizes(rewriter, loc, *getTypeConverter(),
result, resultAddrSpace, sizes);
Value resultUnderlyingSize = sizes.front();
Value resultUnderlyingDesc = rewriter.create<LLVM::AllocaOp>(
loc, getVoidPtrType(), rewriter.getI8Type(), resultUnderlyingSize);
result.setMemRefDescPtr(rewriter, loc, resultUnderlyingDesc);
// Copy pointers, performing address space casts.
auto sourceElemPtrType =
LLVM::LLVMPointerType::get(rewriter.getContext(), sourceAddrSpace);
auto resultElemPtrType =
LLVM::LLVMPointerType::get(rewriter.getContext(), resultAddrSpace);
Value allocatedPtr = sourceDesc.allocatedPtr(
rewriter, loc, sourceUnderlyingDesc, sourceElemPtrType);
Value alignedPtr =
sourceDesc.alignedPtr(rewriter, loc, *getTypeConverter(),
sourceUnderlyingDesc, sourceElemPtrType);
allocatedPtr = rewriter.create<LLVM::AddrSpaceCastOp>(
loc, resultElemPtrType, allocatedPtr);
alignedPtr = rewriter.create<LLVM::AddrSpaceCastOp>(
loc, resultElemPtrType, alignedPtr);
result.setAllocatedPtr(rewriter, loc, resultUnderlyingDesc,
resultElemPtrType, allocatedPtr);
result.setAlignedPtr(rewriter, loc, *getTypeConverter(),
resultUnderlyingDesc, resultElemPtrType, alignedPtr);
// Copy all the index-valued operands.
Value sourceIndexVals =
sourceDesc.offsetBasePtr(rewriter, loc, *getTypeConverter(),
sourceUnderlyingDesc, sourceElemPtrType);
Value resultIndexVals =
result.offsetBasePtr(rewriter, loc, *getTypeConverter(),
resultUnderlyingDesc, resultElemPtrType);
int64_t bytesToSkip =
2 * llvm::divideCeil(
getTypeConverter()->getPointerBitwidth(resultAddrSpace), 8);
Value bytesToSkipConst = rewriter.create<LLVM::ConstantOp>(
loc, getIndexType(), rewriter.getIndexAttr(bytesToSkip));
Value copySize = rewriter.create<LLVM::SubOp>(
loc, getIndexType(), resultUnderlyingSize, bytesToSkipConst);
rewriter.create<LLVM::MemcpyOp>(loc, resultIndexVals, sourceIndexVals,
copySize, /*isVolatile=*/false);
rewriter.replaceOp(op, ValueRange{result});
return success();
}
return rewriter.notifyMatchFailure(loc, "unexpected memref type");
}
};
/// Extracts allocated, aligned pointers and offset from a ranked or unranked
/// memref type. In unranked case, the fields are extracted from the underlying
/// ranked descriptor.
static void extractPointersAndOffset(Location loc,
ConversionPatternRewriter &rewriter,
const LLVMTypeConverter &typeConverter,
Value originalOperand,
Value convertedOperand,
Value *allocatedPtr, Value *alignedPtr,
Value *offset = nullptr) {
Type operandType = originalOperand.getType();
if (isa<MemRefType>(operandType)) {
MemRefDescriptor desc(convertedOperand);