-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathval.py
251 lines (233 loc) · 10.5 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import torch
from mmaction.apis import init_recognizer
import argparse
import yaml
from config.utils import update_config
from dataset import *
from utils_all import *
from utils import *
import math
import accelerate
from tqdm import tqdm
import mmengine
from mmengine.config import Config
from mmengine.runner import Runner
import random
import json
train_loss = []
val_acc = []
def yaml_to_dict(path: str):
with open(path) as f:
return yaml.load(f.read(), yaml.FullLoader)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='./config/ucf-rded.yaml')
# parser.add_argument('--data_path', type=str, default='./data/syn_data')
return parser.parse_args()
def train(accelerator, dataloader, teacher_model, student_model, optimizer, criterion, mix_type, lam, temperature, label_method='distill', im_size=112, inter_mode='none'):
objs = AverageMeter()
teacher_model.eval()
student_model.train()
for i, data in enumerate(dataloader):
if label_method=='soft':
images, labels, hard_label = data
augment = []
augment.append(
transforms.RandomResizedCrop(
size=im_size,
scale=(0.08, 1),
antialias=True,
)
)
augment.append(transforms.RandomHorizontalFlip())
augment = transforms.Compose(augment)
images = augment(images)
else:
images, labels = data
optimizer.zero_grad()
# images = images.cuda()
# labels = labels.cuda()
# print(images.shape)
images = Interpolate(images.unsqueeze(1), mode=inter_mode).squeeze(1)
if mix_type == 'cutmix':
images, lam, rand_index = cutmix(images, lam)
else:
lam = 1
rand_index = torch.tensor(range(images.size(0)))
if len(images.shape) == 5:
images = images.unsqueeze(1)
pred = student_model(images, stage='head')
if label_method == 'distill':
with torch.no_grad():
teacher_label = teacher_model(images, stage='head')
elif label_method == 'soft':
teacher_label = labels
labels = hard_label
elif label_method == 'hard':
teacher_label = None
if criterion == 'ce':
loss = lam * F.cross_entropy(pred, labels) + (1 - lam) * F.cross_entropy(pred, labels[rand_index])
elif criterion == 'kl':
teacher_label = F.softmax(teacher_label / temperature, dim=1)
soft_pred = F.log_softmax(pred / temperature, dim=1)
loss = nn.KLDivLoss(reduction='batchmean')(soft_pred, teacher_label)
elif criterion == 'mse_gt':
loss = F.mse_loss(pred, teacher_label) + 0.1 * F.cross_entropy(pred, labels)
accelerator.backward(loss)
optimizer.step()
n = images.size(0)
objs.update(loss.item(), n)
accelerator.log({'train/loss': objs.avg})
train_loss.append(objs.avg)
return objs.avg
def validate(accelerator, dataloader, model):
objs = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
model.eval()
with torch.no_grad():
for i, (images, target) in enumerate(dataloader):
# images = images.cuda()
# target = target.cuda() b s c t h w
assert len(images.shape) == 6
assert images.shape[3] == 8
output = model(images, stage='head')
# for i, batch in (enumerate(dataloader)):
# pred = model.val_step(batch)
# output = torch.stack([x.pred_score for x in pred])
# target = torch.cat([x.gt_label for x in pred])
output, target = accelerator.gather_for_metrics([output, target])
prec1, prec5 = accuracy(output, target, topk=(1, 5))
n = output.size(0)
top1.update(prec1.item(), n)
top5.update(prec5.item(), n)
accelerator.log({'val/top1': top1.avg, 'val/top5': top5.avg})
val_acc.append(top1.avg)
return top1.avg, top5.avg
def manual_seed(seed=0):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def main(config: dict):
manual_seed()
accelerator = accelerate.Accelerator(log_with='wandb')
group = config['WANDB_NAME'].split('-')[-1]
print(group)
accelerator.init_trackers(project_name=config['DATA'], init_kwargs={'wandb': {'name': config['WANDB_NAME'], 'group': group}})
accelerator.print(config)
config['TRAIN_LOADER']['batch_size'] = config['TRAIN_LOADER']['batch_size'] // accelerator.num_processes
accelerator.print('Num process:', accelerator.num_processes, 'Batch size:', config['TRAIN_LOADER']['batch_size'])
device = accelerator.device
# build dataloader
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
augment = []
# augment.append(ShufflePatches(config['FACTOR']))
augment.append(
transforms.RandomResizedCrop(
size=config['SIZE'],
scale=(0.08, config['MAX_SCALE_CROPS']),
antialias=True,
)
)
augment.append(transforms.RandomHorizontalFlip())
augment.append(normalize)
train_transform = normalize if config['TRAIN_CONFIG']['label_method']=='soft' else transforms.Compose(augment)
print(train_transform)
train_dataset = Syn_Video(config['SYN_PATH'], train_transform, config['IPC'], config['clip_len'])
print(len(train_dataset))
teacher_model = init_recognizer(**config['TEACHER'], device=device)
if config['TRAIN_CONFIG']['label_method']=='soft':
if group == 'datm' or group == 'datmslow':
print('Preload data with tensor dataset')
video_all = torch.load(os.path.join(config['SYN_PATH'], 'images_best.pt'))
label_all = torch.load(os.path.join(config['SYN_PATH'], 'labels_best.pt'))
hard_label = torch.tensor([ [i] * config['IPC'] for i in range(int(label_all.shape[0]/config['IPC']))], dtype=torch.long).view(-1)
print(label_all.shape, hard_label.shape)
# hard_label = torch.arange(0, label_all.shape[0])
# assert config['IPC'] == 1
else:
video_all = []
label_all = []
hard_label = []
for i in range(len(train_dataset)):
video, label = train_dataset[i]
# print(video.shape)
video_all.append(video)
hard_label.append(label)
label_all.append(teacher_model(video.unsqueeze(0).unsqueeze(0).to(device), stage='head').cpu().detach())
video_all = torch.stack(video_all)
label_all = torch.cat(label_all, dim=0)
hard_label = torch.tensor(hard_label)
print(video_all.shape, label_all.shape, hard_label.shape)
train_dataset = torch.utils.data.TensorDataset(video_all, label_all, hard_label)
# train_dataset = load_dataset(config['DATA'], 'train', config['MM_ROOT'])
val_dataset = load_dataset(config['DATA'], 'val', root=config['MM_ROOT'])
train_loader = torch.utils.data.DataLoader(train_dataset, **config['TRAIN_LOADER'])
# cfg = Config.fromfile(config['TEACHER']['config'])
# dataloader_cfg = cfg.get('val_dataloader')
# print(dataloader_cfg)
# val_loader = Runner.build_dataloader(dataloader_cfg)
val_loader = torch.utils.data.DataLoader(val_dataset, **config['VAL_LOADER'])
# load model
student_model = init_recognizer(**config['STUDENT'], device=device)
# setting optimizer
if config['OPTIMIZER'] == 'SGD':
optimizer = torch.optim.SGD(get_parameters(student_model), **config['SGD'])
elif config['OPTIMIZER'] == 'Adam':
optimizer = torch.optim.AdamW(get_parameters(student_model), **config['Adam'])
# setting scheduler
if config['SCHEDULER'] == 'warm-step':
scheduler1 = torch.optim.lr_scheduler.LinearLR(optimizer, **config['WARMUP'])
scheduler2 = torch.optim.lr_scheduler.MultiStepLR(optimizer, **config['MULTISTEPLR'])
scheduler = torch.optim.lr_scheduler.ChainedScheduler([scheduler1, scheduler2])
elif config['SCHEDULER'] == 'cosine':
scheduler = torch.optim.lr_scheduler.LambdaLR(
optimizer,
lambda step: 0.5 * (1.0 + math.cos(math.pi * step / config['VAL_EPOCH'] / 2)) if step <= config['VAL_EPOCH'] else 0,
last_epoch=-1,
)
elif config['SCHEDULER'] == 'linear':
scheduler = torch.optim.lr_scheduler.LambdaLR(
optimizer,
lambda step: (1.0 - step / config['VAL_EPOCH']) if step <= config['VAL_EPOCH'] else 0,
last_epoch=-1,
)
best_acc = 0
best_epoch = 0
top1 = 0
teacher_model, student_model, optimizer, train_loader, val_loader = accelerator.prepare(
teacher_model, student_model, optimizer, train_loader, val_loader
)
# initial_params = {name: param.clone() for name, param in student_model.named_parameters()}
for epoch in tqdm(range(config['VAL_EPOCH']), disable=(not accelerator.is_main_process)):
train_loss = train(accelerator, train_loader, teacher_model, student_model, optimizer, **config['TRAIN_CONFIG'], im_size=config['SIZE'], inter_mode=config['Inter'])
if epoch > 200 and epoch % 10 == 9:
top1, top5 = validate(accelerator, val_loader, student_model)
scheduler.step()
# parameters_changed = False
# for name, param in student_model.named_parameters():
# if not torch.equal(param, initial_params[name]):
# parameters_changed = True
# else:
# print(f"Parameter {name} did not change")
# if not parameters_changed:
# print("No parameters changed. Exiting early.")
# break
if top1 > best_acc:
best_acc = max(top1, best_acc)
best_epoch = epoch
accelerator.print(f'Epoch {epoch}, train_loss: {train_loss}, top1: {top1}, top5: {top5}')
accelerator.print(f'Best acc: {best_acc} at epoch {best_epoch}')
accelerator.log({'result/best_epoch': best_epoch, 'result/best_acc1': best_acc})
if __name__=='__main__':
args = parse_args()
cfg = yaml_to_dict(args.config)
merged_config = update_config(config=cfg, option=args)
main(merged_config)
# with open('log/' + cfg['WANDB_NAME']+'.json', 'w') as f:
# json.dump({'train_loss': train_loss, 'val_acc': val_acc}, f)