-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathfine_tune.yaml
79 lines (67 loc) · 2.26 KB
/
fine_tune.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
model:
chemical_species: 'Auto'
cutoff: 5.0
channel: 128
is_parity: False
lmax: 2
num_convolution_layer: 5
irreps_manual:
- "128x0e"
- "128x0e+64x1e+32x2e"
- "128x0e+64x1e+32x2e"
- "128x0e+64x1e+32x2e"
- "128x0e+64x1e+32x2e"
- "128x0e"
weight_nn_hidden_neurons: [64, 64]
radial_basis:
radial_basis_name: 'bessel'
bessel_basis_num: 8
cutoff_function:
cutoff_function_name: 'XPLOR'
cutoff_on: 4.5
# You can set these to True, if further tuning is needed.
train_shift_scale: False
train_denominator: False
self_connection_type: 'linear'
train:
random_seed: 1
is_train_stress: True
epoch: 100
optimizer: 'adam'
optim_param:
lr: 0.004
scheduler: 'exponentiallr'
scheduler_param:
gamma: 0.99
force_loss_weight: 0.1
stress_loss_weight: 1e-06
per_epoch: 10
# TotalEnergy, Energy, Force, Stress, Stress_GPa, TotalLoss
# RMSE, MAE, Loss available
error_record:
- ['Energy', 'RMSE']
- ['Force', 'RMSE']
- ['Stress', 'RMSE']
- ['TotalLoss', 'None']
continue:
reset_optimizer: True
reset_scheduler: True
reset_epoch: True
checkpoint: './checkpoint_sevennet_0.pth'
# Set True to use shift, scale, and avg_num_neigh from checkpoint (highly recommended)
use_statistic_values_of_checkpoint: True
data:
batch_size: 4
data_divide_ratio: 0.1
#data_format: 'ase' # Default is 'ase'
#data_format_args: # Parameters, will be passed to ase.io.read
#index: '-10:'
# ASE tries to infer its type by extension, in this case, extxyz file is loaded by ase.
#load_dataset_path: ['../data/test.extxyz'] # Example of using ase as data_format
# If only load_dataset_path is provided, train/valid set is automatically decided by splitting dataset by divide ratio
# If both load_dataset_path & load_validset_path is provided, use load_dataset_path as training set.
load_dataset_path: ['fine_tuning_set.extxyz']
#load_validset_path: ['./valid.sevenn_data']
#save_dataset_path: 'total'
#save_by_train_valid: True
#save_by_label: False