-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdescriptor_calculator.py
39 lines (30 loc) · 1.45 KB
/
descriptor_calculator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import pandas as pd
import numpy as np
from rdkit import DataStructs
import rdkit.Chem as Chem
from rdkit.Chem import AllChem, Descriptors, PandasTools
from rdkit.ML.Descriptors import MoleculeDescriptors
def calc_rdkit_desc(df):
# Add a molecule column to the DataFrame using the canonical smiles
PandasTools.AddMoleculeColumnToFrame(df, 'Canonical_Smiles')
# Calculate RDKit descriptors
desc_list = [descriptor[0] for descriptor in Descriptors._descList]
calc = MoleculeDescriptors.MolecularDescriptorCalculator(desc_list)
# Calculate descriptors for each molecule
rdkit_desc = [calc.CalcDescriptors(Chem.MolFromSmiles(m)) for m in df.Canonical_Smiles]
# Create a DataFrame from the calculated descriptors
rdkit_desc_df = pd.DataFrame(rdkit_desc, columns=desc_list)
return rdkit_desc_df
def calc_rdkit_fp(df, radius=2, nBits=2048):
# Convert molecular structures to fingerprint vectors
mfp2_fps = [AllChem.GetMorganFingerprintAsBitVect(mol, radius=radius, nBits=nBits) for mol in df['ROMol']]
# Convert fingerprint vectors to numpy arrays
FPS = []
for fp in mfp2_fps:
arr = np.zeros((nBits,)) # Create an array of zeros with length nBits
DataStructs.ConvertToNumpyArray(fp, arr)
FPS.append(arr)
# Create column names for the fingerprint DataFrame
col_names = [f'bit{x}' for x in range(nBits)]
rdkit_fp_df = pd.DataFrame(FPS, columns=col_names)
return rdkit_fp_df