forked from Projeto-Jupiter/Roll-Control-Codes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
362 lines (317 loc) · 14.7 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import matplotlib.pyplot as plt
import plotly.graph_objects as go
import numpy as np
np.set_printoptions(precision=5, suppress=True)
class Data:
'''Data treatment class. it allows to treat data as a real function from R1
in R1. This class was inspired by rocketpy.Function.'''
def __init__(self, X, Y=None, xlabel = "Abscissas", ylabel = "Ordenadas", name=None, intervalo=[0, 10], method="linear"):
if type(Y) == list or type(Y) == np.ndarray:
self.__X_source__ = np.array(X)
self.__Y_source__ = np.array(Y)
self.method = method
self.I = [X[0], X[-1]]
if method == 'linear': self.f = self.splineLinear # A spline Linear não precisa de processamento
elif method == 'MMQ': self.MMQ()
elif method == 'spline': self.splineSimples()
elif method == 'cubicSpline': self.cubicSpline()
elif method == 'interPol': self.interPolinomial()
elif method == 'Newton': self.polNewton()
else:
print("Method not found. Linear interpolation was assumed.")
self.f = self.splineLinear
else:
self.f = X
self.I = intervalo
self.method = "userFunc"
self.__X_source_label__ = xlabel
self.__Y_source_label__ = ylabel
self.name = name
def __call__(self, *args):
if len(args) == 0:
return self.plot2D()
else:
return self.getValue(*args)
def getValue(self, x):
if self.method == "linear":
if type(x) == float or type(x) == int or type(x) == np.float64: y = self.splineLinear(x)
else: y = np.array([self.splineLinear(arg) for arg in x])
elif self.method == "cubicSpline":
if type(x) == float or type(x) == int or type(x) == np.float64: y = self.f(x)
else: y = np.array([self.f(arg) for arg in x])
elif self.method == "userFunc" or self.method =="MMQ" or self.method =="spline" or self.method =="interPol" or self.method =='Newton':
y = self.f(x)
return y
def plot2D(self, title='', lower=None, upper=None, export=False, xscale="linear", yscale="linear", display=True, style=False):
# Função para gerar os plots que serão utilizados no relatório.
if style == 'matplotlib' or style == 'science':
if style == 'science': plt.style.use('science')
lower = self.I[0] if lower is None else lower
upper = self.I[1] if upper is None else upper
X = np.linspace(lower, upper, 2001)
Y = self.getValue(X)
plt.figure(figsize=(8.09016994375, 5))
plt.plot(X, Y)
plt.xlabel(self.__X_source_label__, fontsize=14)
plt.ylabel(self.__Y_source_label__, fontsize=14)
plt.title(title, fontsize=16)
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)
plt.xscale(xscale)
plt.yscale(yscale)
# plt.grid()
if self.name: plt.legend([self.name])
if type(export) == bool:
if export:
plt.savefig(title + '.pdf')
elif type(export) == str:
plt.savefig(export + '.pdf')
if display: plt.show()
else: # Uses plotly
lower = self.I[0] if lower is None else lower
upper = self.I[1] if upper is None else upper
X = np.linspace(lower, upper, 10001)
Y = self.getValue(X)
if title == '': title = self.__X_source_label__ + ' x ' + self.__Y_source_label__
fig = go.Figure()
fig.add_trace(go.Scatter(x=X, y=Y, name=self.name))
fig.update_layout(title=title,
xaxis_title=self.__X_source_label__,
yaxis_title=self.__Y_source_label__)
if type(export) == bool:
if export:
fig.write_image(title + '.svg')
elif type(export) == str:
fig.write_image(export + '.pdf')
if display: fig.show()
def plotparametric(self, title='', export=False, display=True):
# Função para gerar os plots que serão utilizados no relatório.
X = self.__X_source__
Y = self.__Y_source__
if title == '': title = self.__X_source_label__ + ' x ' + self.__Y_source_label__
fig = go.Figure()
fig.add_trace(go.Scatter(x=X, y=Y, name=self.name))
fig.update_layout(title=title,
xaxis_title=self.__X_source_label__,
yaxis_title=self.__X_source_label__)
if type(export) == bool:
if export:
fig.write_image(title + '.svg')
elif type(export) == str:
fig.write_image(export + '.pdf')
fig.update_yaxes(
scaleanchor = "x",
scaleratio = 1,
)
if display: fig.show()
def compara2Plots(self, dataB, title='', lower=None, upper=None, export=False, xscale="linear", yscale="linear", display=True, style=False):
# Função para gerar os plots que serão utilizados no relatório.
if style == 'matplotlib' or style == 'science':
if style == 'science': plt.style.use('science')
lower = self.I[0] if lower is None else lower
upper = self.I[1] if upper is None else upper
X = np.linspace(lower, upper, 2001)
Y = self.getValue(X)
plt.figure(figsize=(8.09016994375, 5))
plt.plot(X, Y, dataB.__X_source__, dataB.getValue(dataB.__X_source__))
plt.xlabel(self.__X_source_label__, fontsize=14)
plt.ylabel(self.__Y_source_label__, fontsize=14)
plt.title(title, fontsize=16)
plt.xticks(fontsize = 12)
plt.yticks(fontsize = 12)
plt.xscale(xscale)
plt.yscale(yscale)
plt.grid(True)
if self.name: plt.legend([self.name, dataB.name])
if type(export) == bool:
if export:
plt.savefig(title + '.pdf')
elif type(export) == str:
plt.savefig(export + '.pdf')
plt.show()
else:
lower = self.I[0] if lower is None else lower
upper = self.I[1] if upper is None else upper
X = np.linspace(lower, upper, 10001)
Y = self.getValue(X)
Yb = dataB.getValue(X)
fig = go.Figure()
fig.add_trace(go.Scatter(x=X, y=Y, name=self.name))
fig.add_trace(go.Scatter(x=X, y=Yb, name=dataB.name))
fig.update_layout(title=title,
xaxis_title=self.__X_source_label__,
yaxis_title=self.__Y_source_label__)
if type(export) == bool:
if export:
fig.write_image(title + '.svg')
elif type(export) == str:
fig.write_image(export + '.pdf')
if display: fig.show()
# return fig
def comparaNPlots(self, data, title='', lower=None, upper=None, export=False, xscale="linear", yscale="linear", display=True, style=False):
# Function use to compare plots. Insert a lists of plots that should be compared with the main plot (function used to call the compare plot)
if style == 'matplotlib' or style == 'science':
if style == 'science': plt.style.use('science')
lower = self.I[0] if lower is None else lower
upper = self.I[1] if upper is None else upper
X = np.linspace(lower, upper, 2001)
Y = self.getValue(X)
plt.plot(X, Y)
for i in range(len(data)):
plt.plot(X, data[i].getValue(X))
plt.xlabel(self.__X_source_label__, fontsize=14)
plt.ylabel(self.__Y_source_label__, fontsize=14)
plt.title(title, fontsize=16)
plt.xticks(fontsize = 12)
plt.yticks(fontsize = 12)
plt.xscale(xscale)
plt.yscale(yscale)
plt.grid()
if self.name:
legenda = [self.name]
for i in range(len(data)):
legenda.append(data[i].name)
plt.legend(legenda)
if type(export) == bool:
if export:
plt.savefig(title + '.pdf')
elif type(export) == str:
plt.savefig(export + '.pdf')
plt.show()
else:
lower = self.I[0] if lower is None else lower
upper = self.I[1] if upper is None else upper
X = np.linspace(lower, upper, 2001)
Y = self.getValue(X)
if title == '': title = self.__X_source_label__ + ' x ' + self.__Y_source_label__ + ' Comparison '
fig = go.Figure()
fig.add_trace(go.Scatter(x=X, y=Y, name=self.name))
for i in range(len(data)):
fig.add_trace(go.Scatter(x=X, y=data[i].getValue(X), name=data[i].name))
fig.update_layout(title=title,
xaxis_title=self.__X_source_label__,
yaxis_title=self.__Y_source_label__)
if type(export) == bool:
if export:
fig.write_image(title + '.svg')
elif type(export) == str:
fig.write_image(export + '.pdf')
if display: fig.show()
def splineLinear(self, x):
# Nome do método: "linear"
if self.I[0] <= x <= self.I[-1]: position = np.searchsorted(self.__X_source__, x)
elif x > self.I[-1]: position = len(self.__X_source__)-1
else: position = 1
dx = float(self.__X_source__[position] - self.__X_source__[position-1])
dy = float(self.__Y_source__[position] - self.__Y_source__[position-1])
return self.__Y_source__[position-1] + (dy/dx) * (x - self.__X_source__[position-1])
def MMQ(self, ordem = 3):
'''
Faz a interpolação dos dados pelo método do mínimos quadrados.
Input: ordem - ordem da interpolação;
Output: f - função interpolada.
Nome do método: "MMQ"
'''
# Função auxiliar para gerar os polinômios interpoladores.
def polinomios(exp): return lambda x: x**exp
# Vetor com os polinômios interpoladores
G = [polinomios(i) for i in range(ordem+1)]
# Cálculo dos coeficientes para as matrizes do método dos mínimos quadrados
A = np.zeros((len(G), len(G)))
B = np.zeros((len(G)))
for i in range(len(G)):
for j in range(len(G)):
for k in range(len(self.__X_source__)):
A[i][j] += G[i](self.__X_source__[k]) * G[j](self.__X_source__[k])
if j ==0:
B[i] += self.__Y_source__[k] * G[i](self.__X_source__[k])
root = np.linalg.solve(A, B) # Resolução do sistema linear para o cálculo dos coeficientes.
# Criação da função interpoladora com os coeficientes calculados.
def f(x):
fx = 0 # Inicialização do fx.
# Cálculo do valor da função a partir de seus coeficientes.
for i in range(len(root)):
fx += root[i] * x**i
return fx
self.f = f
self.__Y_source__ = self.f(self.__X_source__)
return f
def interPolinomial(self):
# Retorna a função MMQ em que a ordem é igual ao número de pontos.
# Nome do método: "interPol"
return self.MMQ(ordem=len(self.__X_source__))
def splineSimples(self):
self.method = 'spline'
# Gera a spline simples dos dados de entrada.
# Nome do método: "spline"
n = self.__X_source__
def P(x):
# Calcula o polinômio interpolador na forma de Lagrange.
p = 0
for k in range(len(n)):
def l(x):
lx = 1
for j in range(0, k):
lx *= (x - self.__X_source__[j]) / (self.__X_source__[k] - self.__X_source__[j])
for j in range(k+1, len(n)):
lx *= (x - self.__X_source__[j]) / (self.__X_source__[k] - self.__X_source__[j])
return self.__Y_source__[k] * lx
p += l(x)
return p
self.f = P
self.__Y_source__ = self.f(self.__X_source__)
return P
def cubicSpline(self, di = None, df = None):
self.method = 'cubicSpline'
n = len(self.__X_source__)
M = np.zeros((n,n))
b = np.zeros(n)
for i in range(1, n-1):
hi = self.__X_source__[i] - self.__X_source__[i-1]
hi_1 = self.__X_source__[i+1] - self.__X_source__[i]
b[i] = 6 / (hi + hi_1) * ( (self.__Y_source__[i+1] - self.__Y_source__[i]) / hi_1 - (self.__Y_source__[i] - self.__Y_source__[i-1]) / hi )
M[i][i-1] = hi / (hi + hi_1)
M[i][i] = 2
M[i][i+1] = hi_1 / (hi + hi_1)
if di is not None and df is not None:
h1 = self.__X_source__[1] - self.__X_source__[0]
hn = self.__X_source__[n-1] - self.__X_source__[n-2]
M[0][0] = 2
M[0][1] = 1
b[0] = 6 / h1 *( (self.__Y_source__[1] - self.__Y_source__[0]) / h1 - di )
M[n-1][n-2] = 1
M[n-1][n-1] = 2
b[n-1] = 6 / hn * (df - (self.__Y_source__[n-1] - self.__Y_source__[n-2]) / hn )
else:
M[0][0] = 1
b[0] = 0
M[n-1][n-1] = 1
b[n-1] = 0
self.cubicSMi = np.linalg.solve(M, b)
def S(x):
if self.I[0] < x <= self.I[-1]: position = np.searchsorted(self.__X_source__, x)
elif x > self.I[-1]: position = len(self.__X_source__)-1
else: position = 1
hi = self.__X_source__[position] - self.__X_source__[position-1]
xi = self.__X_source__[position]
xi1 = self.__X_source__[position-1]
y = (xi - x) / hi * self.__Y_source__[position-1] + (x - xi1) / hi * self.__Y_source__[position] + hi**2/6 * ( ((xi - x)/hi)**3 - (xi - x)/hi ) * self.cubicSMi[position-1] + hi**2/6 * ( ((x-xi1)/hi)**3 - (x - xi1)/hi ) * self.cubicSMi[position]
return y
self.f = S
return S
def trapezios(self, n):
a = self.I[0]
b = self.I[1]
h = (b - a) / n
integral = self.getValue(a) + self.getValue(b)
for i in range(1, n):
integral += 2 * self.getValue(a + i * h)
integral *= h/2
return integral
def romberg(self, n):
T = np.zeros((n, n))
for i in range(n):
T[i][0] = self.trapezios(2**i)
for j in range(1, i+1):
T[i][j] = (T[i][j-1] + (T[i][j-1] - T[i-1][j-1]) / (4**j - 1))
return T