-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpytorch_cifar10_main.py
214 lines (181 loc) · 7.17 KB
/
pytorch_cifar10_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
'''Train CIFAR10 with PyTorch.'''
import torchvision.transforms as transforms
import time
import torch
import torchvision
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import os
import argparse
# 导入模型
from backbones.ResNet import ResNet18
# 指定GPU
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# 用于计算GPU运行时间
def time_sync():
# pytorch-accurate time
if torch.cuda.is_available():
torch.cuda.synchronize()
return time.time()
# Training
def train(epoch):
model.train()
train_loss = 0
correct = 0
total = 0
train_acc = 0
# 开始迭代每个batch中的数据
for batch_idx, (inputs, targets) in enumerate(trainloader):
# inputs:[b,3,32,32], targets:[b]
# train_outputs:[b,10]
inputs, targets = inputs.to(device), targets.to(device)
# print(inputs.shape)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
# 计算损失
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
# 计算准确率
train_acc = correct / total
# 每训练100个batch打印一次训练集的loss和准确率
if (batch_idx + 1) % 100 == 0:
print('[INFO] Epoch-{}-Batch-{}: Train: Loss-{:.4f}, Accuracy-{:.4f}'.format(epoch + 1,
batch_idx + 1,
loss.item(),
train_acc))
# 计算每个epoch内训练集的acc
total_train_acc.append(train_acc)
# Testing
def test(epoch, ckpt):
global best_acc
model.eval()
test_loss = 0
correct = 0
total = 0
test_acc = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = model(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
test_acc = correct / total
print(
'[INFO] Epoch-{}-Test Accurancy: {:.3f}'.format(epoch + 1, test_acc), '\n')
total_test_acc.append(test_acc)
# 保存权重文件
acc = 100. * correct / total
if acc > best_acc:
print('Saving..')
state = {
'net': model.state_dict(),
'acc': acc,
'epoch': epoch,
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, ckpt)
best_acc = acc
if __name__ == '__main__':
# 设置超参
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--data', type=str, default='cifar10')
parser.add_argument('--T_max', type=int, default=100)
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint')
parser.add_argument('--checkpoint', type=str, default='checkpoint/ResNet18-CIFAR10.pth')
opt = parser.parse_args()
# 设置相关参数
device = torch.device('cuda:0') if torch.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
classes = ('plane', 'car', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck')
# 设置数据增强
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
# 加载CIFAR10数据集
trainset = torchvision.datasets.CIFAR10(
root=opt.data, train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=opt.batch_size, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(
root=opt.data, train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(
testset, batch_size=100, shuffle=False, num_workers=2)
# print(trainloader.dataset.shape)
# 加载模型
print('==> Building model..')
model = ResNet18().to(device)
# DP训练
if device == 'cuda':
model = torch.nn.DataParallel(model)
cudnn.benchmark = True
# 加载之前训练的参数
if opt.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
checkpoint = torch.load(opt.checkpoint)
model.load_state_dict(checkpoint['net'])
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
# 设置损失函数与优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=opt.lr,
momentum=0.9, weight_decay=5e-4)
# 余弦退火有序调整学习率
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.T_max)
# ReduceLROnPlateau(自适应调整学习率)
# scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10)
# 记录training和testing的acc
total_test_acc = []
total_train_acc = []
# 记录训练时间
tic = time_sync()
# 开始训练
for epoch in range(opt.epochs):
train(epoch)
test(epoch, opt.checkpoint)
# 动态调整学习率
scheduler.step()
# ReduceLROnPlateau(自适应调整学习率)
# scheduler.step(loss_val)
# 数据可视化
plt.figure()
plt.plot(range(opt.epochs), total_train_acc, label='Train Accurancy')
plt.plot(range(opt.epochs), total_test_acc, label='Test Accurancy')
plt.xlabel('Epoch')
plt.ylabel('Accurancy')
plt.title('ResNet18-CIFAR10-Accurancy')
plt.legend()
plt.savefig('output/ResNet18-CIFAR10-Accurancy.jpg') # 自动保存plot出来的图片
plt.show()
# 输出best_acc
print(f'Best Acc: {best_acc * 100}%')
toc = time_sync()
# 计算本次运行时间
t = (toc - tic) / 3600
print(f'Training Done. ({t:.3f}s)')