|
| 1 | +import torch |
| 2 | +from torch import nn |
| 3 | +from sklearn.datasets import load_boston |
| 4 | + |
| 5 | +class GradientDescent: |
| 6 | + def __init__(self, learning_rate=0.01, max_iterations=100): |
| 7 | + self.lr = learning_rate |
| 8 | + self.max_iterations = max_iterations |
| 9 | + |
| 10 | + def normalization(self, X): |
| 11 | + """ |
| 12 | + :param X: Input tensor |
| 13 | + :return: Normalized input using l2 norm. |
| 14 | + """ |
| 15 | + l2 = torch.norm(X, p=2, dim=-1) |
| 16 | + l2[l2 == 0] = 1 |
| 17 | + return X / l2.unsqueeze(1) |
| 18 | + |
| 19 | + def compute_error(self, b, m, X, y): |
| 20 | + total_error = 0 |
| 21 | + for i in range(0, X.shape[0]): |
| 22 | + total_error += (y - (torch.mm(m , X.T)) + b) ** 2 |
| 23 | + return total_error / float(X.shape[0]) |
| 24 | + |
| 25 | + def step(self, b_curr, m_curr, X, y, learning_rate): |
| 26 | + b_gradient = 0 |
| 27 | + m_gradient = 0 |
| 28 | + N = float(X.shape[0]) |
| 29 | + for i in range(X.shape[0]): |
| 30 | + b_gradient += -(2/N) * torch.sum(y - (torch.mm(X, m_curr.T) + b_curr), dim=0) |
| 31 | + m_gradient += -(2/N) * torch.sum(torch.mm(X.T, (y - (torch.mm(X, m_curr.T) + b_curr))), dim=0) |
| 32 | + |
| 33 | + new_b = b_curr - (learning_rate * b_gradient) |
| 34 | + new_m = m_curr - (learning_rate * m_gradient) |
| 35 | + return [new_b, new_m] |
| 36 | + |
| 37 | + def gradient_descent(self, X, y, start_b, start_m): |
| 38 | + b = start_b |
| 39 | + m = start_m |
| 40 | + for i in range(self.max_iterations): |
| 41 | + b, m = self.step(b_curr=b, m_curr=m, X=X, y=y, learning_rate=self.lr) |
| 42 | + |
| 43 | + return b, m |
| 44 | + |
| 45 | +if __name__ == '__main__': |
| 46 | + data = load_boston() |
| 47 | + X = torch.tensor(data.data) |
| 48 | + y = torch.tensor(data.target).unsqueeze(1) |
| 49 | + initial_b = 0.0 |
| 50 | + initial_m = torch.zeros((X.shape[1], 1), dtype=torch.double).T |
| 51 | + nn.init.normal(initial_m) |
| 52 | + gd = GradientDescent(learning_rate=0.0001,max_iterations=100) |
| 53 | + gd.compute_error(X=gd.normalization(X), y=y, b=initial_b, m=initial_m) |
| 54 | + bias, slope = gd.gradient_descent(gd.normalization(X), y, start_b=initial_b, start_m=initial_m) |
| 55 | + X = gd.normalization(X) |
| 56 | + print('y: ', y[0].item()) |
| 57 | + print('y_pred: ', (torch.mm(slope, X[0].unsqueeze(0).T)+bias).item()) |
| 58 | + |
0 commit comments