|
| 1 | +""" |
| 2 | +Multi-Layer Preceptron |
| 3 | +""" |
| 4 | +import torch |
| 5 | +from sklearn.datasets import load_digits |
| 6 | +from sklearn.model_selection import train_test_split |
| 7 | + |
| 8 | +class Sigmoid: |
| 9 | + def __call__(self, X): |
| 10 | + return 1 / (1 + torch.exp(-X)) |
| 11 | + |
| 12 | + def gradient(self, X): |
| 13 | + return self.__call__(X) * (1 - self.__call__(X)) |
| 14 | + |
| 15 | +class Softmax: |
| 16 | + def __call__(self, X): |
| 17 | + e_x = torch.exp(X - torch.max(X, dim=-1, keepdim=True).values) |
| 18 | + return e_x / torch.sum(e_x, dim=1, keepdim=True) |
| 19 | + |
| 20 | + def gradient(self, X): |
| 21 | + p = self.__call__(X) |
| 22 | + return p * (1 - p) |
| 23 | + |
| 24 | +def accuracy_score(y, p): |
| 25 | + accuracy = torch.sum(y == p, dim=0) / len(y) |
| 26 | + return accuracy |
| 27 | + |
| 28 | +def to_categorical(X, n_col=None): |
| 29 | + if not n_col: |
| 30 | + n_col = torch.amax(X) + 1 |
| 31 | + |
| 32 | + one_hot = torch.zeros((X.shape[0], n_col)) |
| 33 | + one_hot[torch.arange(X.shape[0]), X] = 1 |
| 34 | + return one_hot |
| 35 | + |
| 36 | +def normalization(X): |
| 37 | + """ |
| 38 | + :param X: Input tensor |
| 39 | + :return: Normalized input using l2 norm. |
| 40 | + """ |
| 41 | + l2 = torch.norm(X, p=2, dim=-1) |
| 42 | + l2[l2 == 0] = 1 |
| 43 | + return X / l2.unsqueeze(1) |
| 44 | + |
| 45 | +class CrossEntropy: |
| 46 | + def __init__(self): |
| 47 | + pass |
| 48 | + def loss(self, y, p): |
| 49 | + p = torch.clip(p, 1e-15, 1-1e-15) |
| 50 | + return - y * torch.log(p) - (1 -y) * torch.log(1 - p) |
| 51 | + |
| 52 | + def accuracy_score(self, y, p): |
| 53 | + return accuracy_score(torch.argmax(y, dim=1), torch.argmax(p, dim=1)) |
| 54 | + |
| 55 | + def gradient(self, y, p): |
| 56 | + p = torch.clip(p, 1e-15, 1 - 1e-15) |
| 57 | + return - (y / p) + (1 - y) / (1 -p) |
| 58 | + |
| 59 | +class MultiLayerPerceptron: |
| 60 | + def __init__(self, n_hidden, n_iterations=1000, learning_rate=0.001): |
| 61 | + self.n_hidden = n_hidden |
| 62 | + self.n_iterations = n_iterations |
| 63 | + self.learning_rate = learning_rate |
| 64 | + self.hidden_activation = Sigmoid() |
| 65 | + self.output_activation = Softmax() |
| 66 | + self.loss = CrossEntropy() |
| 67 | + |
| 68 | + def initalize_weight(self, X, y): |
| 69 | + n_samples, n_features = X.shape |
| 70 | + _, n_outputs = y.shape |
| 71 | + limit = 1 / torch.sqrt(torch.scalar_tensor(n_features)) |
| 72 | + self.W = torch.DoubleTensor(n_features, self.n_hidden).uniform_(-limit, limit) |
| 73 | + |
| 74 | + self.W0 = torch.zeros((1, self.n_hidden)) |
| 75 | + limit = 1 / torch.sqrt(torch.scalar_tensor(self.n_hidden)) |
| 76 | + self.V = torch.DoubleTensor(self.n_hidden, n_outputs).uniform_(-limit, limit) |
| 77 | + self.V0 = torch.zeros((1, n_outputs)) |
| 78 | + |
| 79 | + def fit(self, X, y): |
| 80 | + self.initalize_weight(X, y) |
| 81 | + for i in range(self.n_iterations): |
| 82 | + hidden_input = torch.mm(X, self.W) + self.W0 |
| 83 | + hidden_output = self.hidden_activation(hidden_input) |
| 84 | + |
| 85 | + output_layer_input = torch.mm(hidden_output, self.V) + self.V0 |
| 86 | + y_pred = self.output_activation(output_layer_input) |
| 87 | + |
| 88 | + grad_wrt_first_output = self.loss.gradient(y, y_pred) * self.output_activation.gradient(output_layer_input) |
| 89 | + grad_v = torch.mm(hidden_output.T, grad_wrt_first_output) |
| 90 | + grad_v0 = torch.sum(grad_wrt_first_output, dim=0, keepdim=True) |
| 91 | + |
| 92 | + grad_wrt_first_hidden = torch.mm(grad_wrt_first_output, self.V.T) * self.hidden_activation.gradient(hidden_input) |
| 93 | + grad_w = torch.mm(X.T, grad_wrt_first_hidden) |
| 94 | + grad_w0 = torch.sum(grad_wrt_first_hidden, dim=0, keepdim=True) |
| 95 | + |
| 96 | + # Update weights (by gradient descent) |
| 97 | + # Move against the gradient to minimize loss |
| 98 | + self.V -= self.learning_rate * grad_v |
| 99 | + self.V0 -= self.learning_rate * grad_v0 |
| 100 | + self.W -= self.learning_rate * grad_w |
| 101 | + self.W0 -= self.learning_rate * grad_w0 |
| 102 | + |
| 103 | + # Use the trained model to predict labels of X |
| 104 | + |
| 105 | + def predict(self, X): |
| 106 | + # Forward pass: |
| 107 | + hidden_input = torch.mm(X,self.W) + self.W0 |
| 108 | + hidden_output = self.hidden_activation(hidden_input) |
| 109 | + output_layer_input = torch.mm(hidden_output, self.V) + self.V0 |
| 110 | + y_pred = self.output_activation(output_layer_input) |
| 111 | + return y_pred |
| 112 | + |
| 113 | + |
| 114 | +if __name__ == '__main__': |
| 115 | + data = load_digits() |
| 116 | + X = normalization(torch.tensor(data.data, dtype=torch.double)) |
| 117 | + y = torch.tensor(data.target) |
| 118 | + |
| 119 | + # Convert the nominal y values to binary |
| 120 | + y = to_categorical(y) |
| 121 | + |
| 122 | + X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=1) |
| 123 | + # MLP |
| 124 | + clf = MultiLayerPerceptron(n_hidden=16, |
| 125 | + n_iterations=1000, |
| 126 | + learning_rate=0.01) |
| 127 | + |
| 128 | + clf.fit(X_train, y_train) |
| 129 | + y_pred = torch.argmax(clf.predict(X_test), dim=1) |
| 130 | + y_test = torch.argmax(y_test, dim=1) |
| 131 | + |
| 132 | + accuracy = accuracy_score(y_test, y_pred) |
| 133 | + print("Accuracy:", accuracy) |
| 134 | + |
| 135 | + |
0 commit comments