|
| 1 | +""" |
| 2 | +Adaboost Algorithm Blog post: |
| 3 | +https://www.mygreatlearning.com/blog/adaboost-algorithm/ |
| 4 | +""" |
| 5 | +import torch |
| 6 | +from sklearn.datasets import load_breast_cancer |
| 7 | +from sklearn.model_selection import train_test_split |
| 8 | +from sklearn.metrics import accuracy_score |
| 9 | + |
| 10 | +class stump: |
| 11 | + "Each Stump is a weak classifier and combination of them are referred as Boosting Mechanism" |
| 12 | + def __init__(self): |
| 13 | + """ |
| 14 | + * Polarity is used to classify sample as either 1 or -1 |
| 15 | + * feature index is for identifying node for separating classes |
| 16 | + * features are compared against threshold value |
| 17 | + * Alpha value indicates the classifier accuracy |
| 18 | + """ |
| 19 | + self.polarity = 1 |
| 20 | + self.feature_index = None |
| 21 | + self.threshold = None |
| 22 | + self.alpha = None |
| 23 | + |
| 24 | +class Adaboost: |
| 25 | + def __init__(self, num_classifiers): |
| 26 | + """ |
| 27 | + :param num_classifiers: Number of weak classifiers |
| 28 | + """ |
| 29 | + self.num_classifiers = num_classifiers |
| 30 | + |
| 31 | + def fit(self, X, y): |
| 32 | + """ |
| 33 | + :param X: Input tensor |
| 34 | + :param y: output tensor |
| 35 | + :return: Creates a list of weak classifier with set of properties as |
| 36 | + mentioned in stump class. |
| 37 | + * Initialize weights to 1/N, N is number of samples |
| 38 | + * Iterate through different weak classifiers |
| 39 | + * Minimum error given for using a certain feature value threshold for predicting sample label |
| 40 | + * Iterate through each feature and its unique values to find the threshold value |
| 41 | + * Label samples with value less than threshold as -1 |
| 42 | + * Error, Sum of weights of misclassified samples |
| 43 | + * If the error is over 50% we flip the polarity so that samples that were classified as 0 are |
| 44 | + classified as 1, and vice versa. E.g error = 0.8 => (1 - error) = 0.2 |
| 45 | + * If this threshold resulted in the smallest error we save the configuration |
| 46 | + * Calculate the alpha which is used to update the sample weights, |
| 47 | + Alpha is also an approximation of this classifier's proficiency |
| 48 | + * set all predictions to '1' initially |
| 49 | + * The indexes where the sample values are below threshold, label them as -1 |
| 50 | + * Updated weights and normalize to one |
| 51 | + * save each weak classifier |
| 52 | + """ |
| 53 | + n_samples, n_features = X.shape[0], X.shape[1] |
| 54 | + weight = torch.zeros(n_samples).fill_(1/n_samples) |
| 55 | + self.clfs = [] |
| 56 | + for _ in range(self.num_classifiers): |
| 57 | + clf = stump() |
| 58 | + minimum_error = float('inf') |
| 59 | + for feature_i in range(n_features): |
| 60 | + feature_values = X[:, feature_i].unsqueeze(1) |
| 61 | + unqiue_values = feature_values.unique() |
| 62 | + for threshold in unqiue_values: |
| 63 | + p = 1 |
| 64 | + prediction = torch.ones(y.shape) |
| 65 | + prediction[X[:, feature_i] < threshold] = -1 |
| 66 | + error = torch.sum(weight[y != prediction]) |
| 67 | + if error > 0.5: |
| 68 | + error = 1 - error |
| 69 | + p = -1 |
| 70 | + |
| 71 | + if error < minimum_error: |
| 72 | + clf.polarity = p |
| 73 | + clf.threshold = threshold |
| 74 | + clf.feature_index = feature_i |
| 75 | + minimum_error = error |
| 76 | + |
| 77 | + clf.alpha = 0.5 * torch.log(1.0 - minimum_error) / (minimum_error + 1e-10) |
| 78 | + predictions = torch.ones(y.shape) |
| 79 | + negative_idx = (clf.polarity * X[:, clf.feature_index] < clf.polarity * clf.threshold) |
| 80 | + predictions[negative_idx] = -1 |
| 81 | + |
| 82 | + weight *= torch.exp(-clf.alpha * y * predictions) |
| 83 | + weight /= torch.sum(weight) |
| 84 | + |
| 85 | + self.clfs.append(clf) |
| 86 | + |
| 87 | + def predict(self, X): |
| 88 | + """ |
| 89 | + same process as mentioned above. |
| 90 | + :param X: |
| 91 | + :return: predicted estimate of ground truth. |
| 92 | + """ |
| 93 | + n_samples = X.shape[0] |
| 94 | + y_pred = torch.zeros((n_samples, 1)) |
| 95 | + for clf in self.clfs: |
| 96 | + predictions = torch.ones(y_pred.shape) |
| 97 | + negative_idx = (clf.polarity * X[:, clf.feature_index] < clf.polarity * clf.threshold) |
| 98 | + predictions[negative_idx] = -1 |
| 99 | + y_pred += clf.alpha * predictions |
| 100 | + |
| 101 | + print(y_pred) |
| 102 | + y_pred = torch.sign(y_pred).flatten() |
| 103 | + print(y_pred) |
| 104 | + return y_pred |
| 105 | + |
| 106 | +if __name__ == '__main__': |
| 107 | + breast_cancer = load_breast_cancer() |
| 108 | + torch.manual_seed(0) |
| 109 | + X = torch.tensor(breast_cancer.data, dtype=torch.float) |
| 110 | + y = torch.tensor(breast_cancer.target) |
| 111 | + n_classes = len(torch.unique(y)) |
| 112 | + x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3) |
| 113 | + clf = Adaboost(num_classifiers=20) |
| 114 | + clf.fit(x_train, y_train) |
| 115 | + y_pred = clf.predict(x_test) |
| 116 | + |
| 117 | + accuracy = accuracy_score(y_test, y_pred) |
| 118 | + print ("Accuracy:", accuracy) |
0 commit comments