-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathtest_torch.py
208 lines (156 loc) · 6.16 KB
/
test_torch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import argparse
import os
import os.path as osp
import numpy as np
import torch
import torch.nn as nn
from PIL import Image
from torch.nn import DataParallel
from torch.nn import functional as F
from torch.utils import data
from torch.utils.data import DataLoader
import settings
from network import EANet
logger = settings.logger
def ensure_dir(dir_path):
if not osp.isdir (dir_path):
os.makedirs(dir_path)
def fetch(image_path, label_path=None):
with open(image_path, 'rb') as fp:
image = Image.open(fp).convert('RGB')
image = torch.FloatTensor(np.asarray(image)) / 255
image = (image - settings.MEAN) / settings.STD
image = image.permute(2, 0, 1).unsqueeze(dim=0)
if label_path is not None:
with open(label_path, 'rb') as fp:
label = Image.open(fp).convert('P')
label = torch.FloatTensor(np.asarray(label))
label = label.unsqueeze(dim=0).unsqueeze(dim=1)
else:
label = None
return image, label
def pad_inf(image, label=None):
h, w = image.size()[-2:]
stride = settings.STRIDE
pad_h = (stride + 1 - h % stride) % stride
pad_w = (stride + 1 - w % stride) % stride
if pad_h > 0 or pad_w > 0:
image = F.pad(image, (0, pad_w, 0, pad_h), mode='constant', value=0.)
if label is not None:
label = F.pad(label, (0, pad_w, 0, pad_h), mode='constant',
value=settings.IGNORE_LABEL)
return image, label
class BaseDataset(data.Dataset):
def __init__(self, data_root, split):
self.data_root = data_root
file_list = osp.join('datalist', split + '.txt')
file_list = tuple(open(file_list, 'r'))
file_list = [id_.rstrip() for id_ in file_list]
self.files = file_list
def __len__(self):
return len(self.files)
def __getitem__(self, idx):
image_id = self.files[idx]
return self._get_item(image_id)
def _get_item(self, idx):
raise NotImplementedError
class TestDataset(BaseDataset):
def __init__(self, data_root, split='test'):
super(TestDataset, self).__init__(data_root, split)
def _get_item(self, image_id):
image_path = osp.join(self.data_root, image_id + '.jpg')
image, _ = fetch(image_path)
return image[0], image_id
class TestSession(object):
def __init__(self, dt_split):
self.log_dir = settings.LOG_DIR
self.model_dir = settings.MODEL_DIR
self.net = EANet(settings.N_CLASSES, settings.N_LAYERS).cuda()
self.net = DataParallel(self.net)
dataset = TestDataset(data_root=settings.TEST_DATA_ROOT, split=dt_split)
self.dataloader = DataLoader(dataset, batch_size=1, shuffle=False,
num_workers=16, drop_last=False)
self.hist = 0
def load_checkpoints(self, name):
ckp_path = name
try:
obj = torch.load(ckp_path,
map_location=lambda storage, loc: storage.cuda())
logger.info('Load checkpoint %s.' % ckp_path)
except FileNotFoundError:
logger.info('No checkpoint %s!' % ckp_path)
return
self.net.module.load_state_dict(obj['net'])
def inf_batch(self, image):
image = image.cuda()
with torch.no_grad():
logit = self.net(image)
return logit
def trans_scale(image, h, w):
image = F.interpolate(image, size=(h, w), mode='bilinear',
align_corners=True)
return image
def get_palette(num_cls):
n = num_cls
palette = [0] * (n * 3)
for j in range(0, n):
lab = j
palette[j * 3 + 0] = 0
palette[j * 3 + 1] = 0
palette[j * 3 + 2] = 0
i = 0
while lab:
palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i))
palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i))
palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i))
i += 1
lab >>= 3
return palette
def test_main(ckp_name='final.pth'):
sess = TestSession('test')
sess.load_checkpoints(ckp_name)
dt_iter = sess.dataloader
sess.net.eval()
save_dir = osp.join(settings.TEST_SAVE_DIR, settings.EXP_NAME)
logger.info('Set Test save dir, %s' % save_dir)
ensure_dir(save_dir)
for _, [image, image_id] in enumerate(dt_iter):
_, _, h, w = image.size()
logits = np.zeros((1, settings.N_CLASSES,h, w), np.float32)
logits = torch.Tensor (logits)
test_scale = list (settings.TEST_SCALES)
# orig
for scale in test_scale:
scale_h = (int) (scale * h)
scale_w = (int) (scale * w)
scale_image = trans_scale(image, scale_h, scale_w)
scale_image, _ = pad_inf(scale_image)
scale_logit = sess.inf_batch(scale_image)
scale_logit = scale_logit[:, :, 0:scale_h, 0:scale_w]
scale_logit = F.interpolate(scale_logit, size=[h, w], mode='bilinear', align_corners=True)
logits += scale_logit.cpu()
# flip
for scale in test_scale :
scale_h = (int) (scale * h)
scale_w = (int) (scale * w)
flip_image = torch.flip(image, [3])
flip_image = trans_scale(flip_image, scale_h, scale_w)
flip_image, _ = pad_inf(flip_image)
flip_logit = sess.inf_batch(flip_image)
flip_logit = flip_logit[:, :, 0:scale_h, 0:scale_w]
flip_logit = F.interpolate(flip_logit, size=[h, w], mode='bilinear', align_corners=True)
logit = torch.flip(flip_logit, [3])
logits += logit.cpu()
pred = logits.max(dim=1)[1]
# save results
pred_arr = np.array(pred.cpu().data)
pred_image = Image.fromarray(np.uint8(pred_arr[0]))
palette = get_palette(256)
pred_image.putpalette(palette)
name = image_id[0].split('.')[0]
save_path = osp.join(save_dir, f'{name}.png')
pred_image.save(save_path)
if __name__ == '__main__':
load_dir = osp.join(settings.MODEL_DIR, settings.EXP_NAME)
load_name = osp.join(load_dir, 'final.pth')
test_main(load_name)