-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAthena_queries.sql
327 lines (316 loc) · 7.62 KB
/
Athena_queries.sql
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# 1. create the data table
CREATE EXTERNAL TABLE IF NOT EXISTS `big_data_project`.`data` (
`id` string,
`name` string,
`username` string,
`tweet` string,
`followers_count` int,
`location` string,
`geo` string,
`created_at` string
)
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'
WITH SERDEPROPERTIES ('field.delim' = ',')
STORED AS INPUTFORMAT 'org.apache.hadoop.mapred.TextInputFormat' OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION 's3://ptb2-effy/demo/data.csv/'
TBLPROPERTIES ('classification' = 'csv');
# 2. creat the prediction table
CREATE EXTERNAL TABLE IF NOT EXISTS `big_data_project`.`prediction` (
`label` int,
`tweet` string,
`tokens` array < string >,
`filtered` array < string >,
`cv` array < double >,
`features` array < double >,
`rawprediction` array < double >,
`probability` array < double >,
`prediction` double
)
ROW FORMAT SERDE 'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
STORED AS INPUTFORMAT 'org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat' OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'
LOCATION 's3://ptb2-effy/demo/predictions.parquet/'
TBLPROPERTIES ('classification' = 'parquet');
# 3. create the words table
CREATE TABLE "big_data_project"."words" WITH (format = 'parquet') AS
select tweet,
words
from prediction
cross join unnest(filtered) as t(words); -- use unnest to explode the 'filtered' column which contains an array of tokens of the tweets with stop words removed.
# 4. create the table with cleaned location
CREATE TABLE "big_data_project"."clean_location" WITH (format = 'TEXTFILE', field_delimiter = ',') AS with a as (
SELECT *,
regexp_replace(
location,
'["]+',
''-- remove the double quotation mark from location
) AS location_without_quotes
FROM data
)
select *,
case
when location_without_quotes in (
'Alabama',
'Alaska',
'Arizona',
'Arkansas',
'California',
'Colorado',
'Connecticut',
'Delaware',
'Florida',
'Georgia',
'Hawaii',
'Idaho',
'Illinois',
'Indiana',
'Iowa',
'Kansas',
'Kentucky',
'Louisiana',
'Maine',
'Maryland',
'Massachusetts',
'Michigan',
'Minnesota',
'Mississippi',
'Missouri',
'Montana',
'Nebraska',
'Nevada',
'New Hampshire',
'New Jersey',
'New Mexico',
'New York',
'North Carolina',
'North Dakota',
'Ohio',
'Oklahoma',
'Oregon',
'Pennsylvania',
'Rhode Island',
'South Carolina',
'South Dakota',
'Tennessee',
'Texas',
'Utah',
'Vermont',
'Virginia',
'Washington',
'West Virginia',
'Wisconsin',
'Wyoming',
'New York City',
'New York',
'Chicago',
'Las Vegas',
'Seattle',
'San Francisco',
'Washington',
'D.C.',
'New Orleans',
'Palm Springs',
'San Diego',
'St. Louis',
'Honolulu',
'Miami',
'Boston',
'Orlando',
'Nashville',
'Los Angeles',
'Dallas',
'Austin',
'Houston',
'Atlanta',
'Brooklyn',
'Denver',
'Detroit',
'NYC',
'Philadelphia',
'USA',
'the US',
'America'
) then 'United States'
when location_without_quotes in(
'London',
'England',
'UK',
'Glasgow',
'Manchester',
'Scotland'
) then 'United Kingdom'
when location_without_quotes in(
'Bandung',
'DKI Jakarta',
'indonesia',
'Jawa Tengah',
'Jawa Timur',
'Jawa Barat',
'Yogyakarta',
'Jakarta Capital Region',
'Tangerang',
'Kota Surabaya',
'Jakarta',
'Bogor',
'Bekasi',
'Kota Bandung',
'Sukabumi',
'Jakarta Timur',
'Lampung',
'Depok',
'Kalimantan Timur',
'🇮🇩'
) then 'Indonesia'
when location_without_quotes in (
'Toronto',
'Vancouver',
'National Capital Region'
) then 'Canada'
when location_without_quotes in ('Melbourne', 'Sydney') then 'Australia'
when location_without_quotes in ('🇵🇭', 'Republic of the Philippines') then 'Philippines' else location_without_quotes
end as location_clean-- pick the most common countries and map their provinces/cities to the countries
from a;
# 5. create the table that joins the data table and prediction table
CREATE TABLE "big_data_project"."clean_data" WITH (format = 'TEXTFILE', field_delimiter = ',') AS with a as (
SELECT *,
regexp_replace(
location,
'["]+',
''
) AS location_without_quotes
FROM data
)
select a.id,
a.name,
a.username,
a.tweet,
a.followers_count, -- leave the columns with arrays and vectors
case
when p.label = 1 then 'positive'
when p.label = 0 then 'negative'
end as sentiment,
case
when cast(p.prediction as int) = 1 then 'positive' else 'negative'
end as prediction, -- change '0' and '1' in label and prediction columns to 'negative' and 'positive' for easier interpretation
case
when a.location_without_quotes in (
'Alabama',
'Alaska',
'Arizona',
'Arkansas',
'California',
'Colorado',
'Connecticut',
'Delaware',
'Florida',
'Georgia',
'Hawaii',
'Idaho',
'Illinois',
'Indiana',
'Iowa',
'Kansas',
'Kentucky',
'Louisiana',
'Maine',
'Maryland',
'Massachusetts',
'Michigan',
'Minnesota',
'Mississippi',
'Missouri',
'Montana',
'Nebraska',
'Nevada',
'New Hampshire',
'New Jersey',
'New Mexico',
'New York',
'North Carolina',
'North Dakota',
'Ohio',
'Oklahoma',
'Oregon',
'Pennsylvania',
'Rhode Island',
'South Carolina',
'South Dakota',
'Tennessee',
'Texas',
'Utah',
'Vermont',
'Virginia',
'Washington',
'West Virginia',
'Wisconsin',
'Wyoming',
'New York City',
'New York',
'Chicago',
'Las Vegas',
'Seattle',
'San Francisco',
'Washington',
'D.C.',
'New Orleans',
'Palm Springs',
'San Diego',
'St. Louis',
'Honolulu',
'Miami',
'Boston',
'Orlando',
'Nashville',
'Los Angeles',
'Dallas',
'Austin',
'Houston',
'Atlanta',
'Brooklyn',
'Denver',
'Detroit',
'NYC',
'Philadelphia',
'USA',
'the US',
'America'
) then 'United States'
when a.location_without_quotes in(
'London',
'England',
'UK',
'Glasgow',
'Manchester',
'Scotland'
) then 'United Kingdom'
when a.location_without_quotes in(
'Bandung',
'DKI Jakarta',
'indonesia',
'Jawa Tengah',
'Jawa Timur',
'Jawa Barat',
'Yogyakarta',
'Jakarta Capital Region',
'Tangerang',
'Kota Surabaya',
'Jakarta',
'Bogor',
'Bekasi',
'Kota Bandung',
'Sukabumi',
'Jakarta Timur',
'Lampung',
'Depok',
'Kalimantan Timur',
'🇮🇩'
) then 'Indonesia'
when a.location_without_quotes in (
'Toronto',
'Vancouver',
'National Capital Region'
) then 'Canada'
when a.location_without_quotes in ('Melbourne', 'Sydney') then 'Australia'
when a.location_without_quotes in ('🇵🇭', 'Republic of the Philippines') then 'Philippines' else location_without_quotes
end as location_clean
from a
right join prediction p on a.tweet = p.tweet