Skip to content

Commit 2fc7b44

Browse files
committed
remove requirement file, added conda environment file
1 parent f531bf2 commit 2fc7b44

File tree

8 files changed

+36
-94
lines changed

8 files changed

+36
-94
lines changed

.gitignore

+1
Original file line numberDiff line numberDiff line change
@@ -108,3 +108,4 @@ venv.bak/
108108
*.pkl
109109
*-solved.ipynb
110110

111+
.idea/

Exercise1/exercise1.ipynb

+1-1
Original file line numberDiff line numberDiff line change
@@ -1299,7 +1299,7 @@
12991299
"name": "python",
13001300
"nbconvert_exporter": "python",
13011301
"pygments_lexer": "ipython3",
1302-
"version": "3.6.4"
1302+
"version": "3.6.6"
13031303
}
13041304
},
13051305
"nbformat": 4,

Exercise3/exercise3.ipynb

+1-1
Original file line numberDiff line numberDiff line change
@@ -915,7 +915,7 @@
915915
"name": "python",
916916
"nbconvert_exporter": "python",
917917
"pygments_lexer": "ipython3",
918-
"version": "3.6.4"
918+
"version": "3.6.6"
919919
}
920920
},
921921
"nbformat": 4,

Exercise4/exercise4.ipynb

+17-5
Original file line numberDiff line numberDiff line change
@@ -710,15 +710,27 @@
710710
"</div>\n",
711711
"\n",
712712
"<div class=\"alert alert-box alert-success\">\n",
713-
"**Practical Tip:** Gradient checking works for any function where you are computing the cost and the gradient. Concretely, you can use the same `computeNumericalGradient` function to check if your gradient implementations for the other exercises are correct too (e.g., logistic regression’s cost function).\n",
713+
" <b>Practical Tip:</b> Gradient checking works for any function where you are computing the cost and the gradient. Concretely, you can use the same `computeNumericalGradient` function to check if your gradient implementations for the other exercises are correct too (e.g., logistic regression’s cost function).\n",
714714
"</div>"
715715
]
716716
},
717717
{
718718
"cell_type": "code",
719-
"execution_count": null,
720-
"metadata": {},
721-
"outputs": [],
719+
"execution_count": 1,
720+
"metadata": {},
721+
"outputs": [
722+
{
723+
"ename": "NameError",
724+
"evalue": "name 'utils' is not defined",
725+
"output_type": "error",
726+
"traceback": [
727+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
728+
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
729+
"\u001b[0;32m<ipython-input-1-d4995b4088e4>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mutils\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcheckNNGradients\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnnCostFunction\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
730+
"\u001b[0;31mNameError\u001b[0m: name 'utils' is not defined"
731+
]
732+
}
733+
],
722734
"source": [
723735
"utils.checkNNGradients(nnCostFunction)"
724736
]
@@ -916,7 +928,7 @@
916928
"name": "python",
917929
"nbconvert_exporter": "python",
918930
"pygments_lexer": "ipython3",
919-
"version": "3.6.4"
931+
"version": "3.6.6"
920932
}
921933
},
922934
"nbformat": 4,

Exercise5/exercise5.ipynb

+6-18
Original file line numberDiff line numberDiff line change
@@ -19,9 +19,7 @@
1919
{
2020
"cell_type": "code",
2121
"execution_count": null,
22-
"metadata": {
23-
"collapsed": true
24-
},
22+
"metadata": {},
2523
"outputs": [],
2624
"source": [
2725
"# used for manipulating directory paths\n",
@@ -141,9 +139,7 @@
141139
{
142140
"cell_type": "code",
143141
"execution_count": null,
144-
"metadata": {
145-
"collapsed": true
146-
},
142+
"metadata": {},
147143
"outputs": [],
148144
"source": [
149145
"def linearRegCostFunction(X, y, theta, lambda_=0.0):\n",
@@ -359,9 +355,7 @@
359355
{
360356
"cell_type": "code",
361357
"execution_count": null,
362-
"metadata": {
363-
"collapsed": true
364-
},
358+
"metadata": {},
365359
"outputs": [],
366360
"source": [
367361
"def learningCurve(X, y, Xval, yval, lambda_=0):\n",
@@ -528,9 +522,7 @@
528522
{
529523
"cell_type": "code",
530524
"execution_count": null,
531-
"metadata": {
532-
"collapsed": true
533-
},
525+
"metadata": {},
534526
"outputs": [],
535527
"source": [
536528
"def polyFeatures(X, p):\n",
@@ -732,9 +724,7 @@
732724
{
733725
"cell_type": "code",
734726
"execution_count": null,
735-
"metadata": {
736-
"collapsed": true
737-
},
727+
"metadata": {},
738728
"outputs": [],
739729
"source": [
740730
"def validationCurve(X, y, Xval, yval):\n",
@@ -896,9 +886,7 @@
896886
{
897887
"cell_type": "code",
898888
"execution_count": null,
899-
"metadata": {
900-
"collapsed": true
901-
},
889+
"metadata": {},
902890
"outputs": [],
903891
"source": []
904892
}

README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -57,7 +57,7 @@ If you are on a windows machine:
5757

5858
Once you have installed python, create a new python environment will all the requirements using the following command:
5959

60-
conda create -n machine_learning python=3.6 scipy=1 numpy=1.13 matplotlib=2.1 jupyter
60+
conda env create -f environment.yml
6161

6262
After the new environment is setup, activate it using (windows)
6363

environment.yml

+9
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,9 @@
1+
name: machine_learning
2+
channels:
3+
- defaults
4+
dependencies:
5+
- jupyter=1.0.0
6+
- matplotlib=2.1.2
7+
- numpy=1.13.3
8+
- python=3.6.4
9+
- scipy=1.0.0

requirements.txt

-68
This file was deleted.

0 commit comments

Comments
 (0)