-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrnnlm.py
135 lines (123 loc) · 4.44 KB
/
rnnlm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#!/usr/bin/env python
# encode: utf-8
# Recurrent Neural Network Language Model
# This code is available under the MIT License.
# (c)2014 Nakatani Shuyo / Cybozu Labs Inc.
import numpy, codecs, re
class RNNLM:
def __init__(self, V, K=10):
self.K = K
self.v = V
self.U = numpy.random.randn(K, V) / 3
self.W = numpy.random.randn(K, K) / 3
self.V = numpy.random.randn(V, K) / 3
def learn(self, docs, alpha=0.1):
index = numpy.arange(len(docs))
numpy.random.shuffle(index)
for i in index:
doc = docs[i]
pre_s = numpy.zeros(self.K)
pre_w = 0 # <s>
for w in doc:
s = 1 / (numpy.exp(- numpy.dot(self.W, pre_s) - self.U[:, pre_w]) + 1)
z = numpy.dot(self.V, s)
y = numpy.exp(z - z.max())
y = y / y.sum()
y[w] -= 1 # -e0
eha = numpy.dot(y, self.V) * s * (s - 1) * alpha # eh * alpha
self.V -= numpy.outer(y, s * alpha)
self.U[:, pre_w] += eha
self.W += numpy.outer(pre_s, eha)
pre_w = w
pre_s = s
def perplexity(self, docs):
log_like = 0
N = 0
for doc in docs:
s = numpy.zeros(self.K)
pre_w = 0 # <s>
for w in doc:
s = 1 / (numpy.exp(- numpy.dot(self.W, s) - self.U[:, pre_w]) + 1)
z = numpy.dot(self.V, s)
y = numpy.exp(z - z.max())
y = y / y.sum()
log_like -= numpy.log(y[w])
pre_w = w
N += len(doc)
return log_like / N
def run(self, inp):
s = numpy.zeros(self.K)
pre_w = 0 # <s>
for w in inp:
s = 1 / (numpy.exp(- numpy.dot(self.W, s) - self.U[:, pre_w]) + 1)
z = numpy.dot(self.V, s)
y = numpy.exp(z - z.max())
y = y / y.sum()
pre_w = w
return y
def dist(self, w):
if w==0:
self.s = numpy.zeros(self.K)
else:
self.s = 1 / (numpy.exp(- numpy.dot(self.W, self.s) - self.U[:, w]) + 1)
z = numpy.dot(self.V, self.s)
y = numpy.exp(z - z.max())
return y / y.sum()
class RNNLM_BPTT(RNNLM):
"""RNNLM with BackPropagation Through Time"""
def learn(self, docs, alpha=0.1, tau=3):
index = numpy.arange(len(docs))
numpy.random.shuffle(index)
for i in index:
doc = docs[i]
pre_s = [numpy.zeros(self.K)]
pre_w = [0] # <s>
for w in doc:
s = 1 / (numpy.exp(- numpy.dot(self.W, pre_s[-1]) - self.U[:, pre_w[-1]]) + 1)
z = numpy.dot(self.V, s)
y = numpy.exp(z - z.max())
y = y / y.sum()
# calculate errors
y[w] -= 1 # -e0
eh = [numpy.dot(y, self.V) * s * (s - 1)] # eh[t]
for t in range(min(tau, len(pre_s)-1)):
st = pre_s[-1-t]
eh.append(numpy.dot(eh[-1], self.W) * st * (1 - st))
# update parameters
pre_w.append(w)
pre_s.append(s)
self.V -= numpy.outer(y, s * alpha)
for t in range(len(eh)):
self.U[:, pre_w[-1-t]] += eh[t] * alpha
self.W += numpy.outer(pre_s[-2-t], eh[t]) * alpha
class BIGRAM:
def __init__(self, V, alpha=0.01):
self.V = V
self.alpha = alpha
self.count = dict()
self.amount = numpy.zeros(V, dtype=int)
def learn(self, docs):
for doc in docs:
pre_w = 0 # <s>
for w in doc:
if pre_w not in self.count:
self.count[pre_w] = {w:1}
elif w not in self.count[pre_w]:
self.count[pre_w][w] = 1
else:
self.count[pre_w][w] += 1
self.amount[pre_w] += 1
pre_w = w
def perplexity(self, docs):
log_like = 0
N = 0
va = self.V * self.alpha
for doc in docs:
pre_w = 0 # <s>
for w in doc:
c = 0
if pre_w in self.count and w in self.count[pre_w]:
c = self.count[pre_w][w]
log_like -= numpy.log((c + self.alpha) / (self.amount[pre_w] + va))
pre_w = w
N += len(doc)