-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
174 lines (151 loc) · 4.57 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#!/usr/bin/env python3
# encode: utf-8
import os
import rnnlm as r
import corpus_reader as c
import numpy as np
import pickle
import utils
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
np.seterr(over='ignore')
CORPUS_PATH = os.path.expanduser('~/deepfanfic_corpus/fanfiction.net/stories')
filters = {'language' : 'english'}
def prepare_docs(texts):
voca = {"<s>":0, "</s>":1}
vocalist = ["<s>", "</s>"]
docs = []
for text in texts:
doc = []
for word in text:
if word not in voca:
voca[word] = len(vocalist)
vocalist.append(word)
doc.append(voca[word])
if len(doc) > 0:
doc.append(1) # end word
docs.append(doc)
return [vocalist, docs]
def main():
path = os.path.expanduser('~/deepfanfic/models')
create_single_models(-1, path, print_progress=True)
#index = create_index(path)
#save(path, index, 'index')
#index = load(path, index, 'index')
def test_models(index, path):
valid_models = query(['the'], index, path)
vmodels = list(valid_models.items())
vmodels.sort(key=lambda m : m[1], reverse=True)
if len(vmodels) == 0 :
print('No models found!')
return
bmodels = vmodels[:min(5,len(vmodels))]
bmodels = [(id2name(idx), p) for idx,p in bmodels]
for i,m in enumerate(bmodels):
print(i+1, m[0].split('.')[2],'/t',m[1])
i = input('press number of choice:')
fname = bmodels[int(i)-1][0]
path = os.path.join(CORPUS_PATH,fname)
#with open(path,'w') as f:
# text = f.read()
from subprocess import call
call(['less',path])
def id2name(id):
files = os.listdir(CORPUS_PATH)
fname = [f for f in files if f.startswith('ffnet.'+str(id))][0]
return fname
def query(query, index, path):
names = set(index[query[0]])
for word in query[1:]:
names.intersection(index[word])
model_probs = {}
for name in names:
[vlist,model] = load(path, name)
dist = model.run([0])
prob = 0
for word in query:
pos = vlist.index(word)
prob += dist[pos]
model_probs[name] = prob
return model_probs
def create_index(path):
index = {}
modelfiles = os.listdir(path)
for name in modelfiles:
[vlist, _] = load(path, name)
for w in vlist:
if w not in index:
index[w] = [name]
else:
index[w].append(name)
return index
def create_single_models(max_count, path, print_progress=False):
count = 0
max_count = max(max_count, -1)
doc_count = c.count_documents()
if print_progress:
print('Number of documents: %s' % str(doc_count))
for [text,meta] in c.get_corpus_iterator(**filters):
idx = meta['storyid']
p = train_single(5, 10, 1.2, idx, text, path)
if print_progress:
print('Trained and saved model on document no %s/%s' % (str(count+1), str(doc_count)), end='\r')
utils.print_percent(count/doc_count)
#print('\nid: %s' % id)
count += 1
if count == max_count:
break
'''
plt.figure(figsize=(20,15))
legends = []
for K in range(10,30,5):
for a in [0.8,1.0,1.2]:
p = train_singles(5, K, a, ids, texts)
i, per = np.array(p).T
plt.plot(i,per)
legends.append(['K: '+str(K)+', a: '+str(a)])
plt.legend(legends)
plt.savefig('plots.svg')
'''
def train_single(I, K, a, name, text, path=''):
'''
I: number of epochs
K: size of hidden layer
a: learning rate alha
name: file/model name for saving
text: text to train on
'''
perplexities = []
# train single document model
[vlist, docs] = prepare_docs([text])
V = len(vlist) # input layer size
model = r.RNNLM_BPTT(V, K)
for i in range(I):
perplexities.append([i,model.perplexity(docs)])
model.learn(docs, a)
a = a * 0.95 + 0.01
perplexities.append([I,model.perplexity(docs)])
if path != '':
save(path, [vlist, model], name)
return perplexities
def save(path, data, name):
'''
path: save location
data: the model to save
name: filename to save under
'''
with open(os.path.join(path,name), 'wb') as f:
pickle.dump(data, f)
f.close()
def load(path, name):
'''
path: location from which to load
name: name of the file
'''
with open(os.path.join(path,name), 'rb') as f:
data = pickle.load(f)
f.close()
return data
if __name__ == '__main__':
main()