-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets.py
193 lines (161 loc) · 6.32 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
from pathlib import Path
import pickle
from unicodedata import name
from torch.utils.data.dataloader import DataLoader
from models import BaseVAE
from torch.utils.data import Dataset, dataset
from torchvision.datasets import MNIST, CelebA
import torch
from torchvision import transforms
from utils import get_celeba_att, prepare_config
from tqdm import tqdm
import os
import lmdb
import io
from PIL import Image
import numpy as np
from copy import deepcopy
DATA_PATH = Path.cwd().joinpath('data')
DATA_PATH.mkdir(parents=True, exist_ok=True)
CONFIG = prepare_config("./metadata.json")
def celeba_default_data_transforms():
image_size = CONFIG['celeba']['image_size']
transform = transforms.Compose(
[
# transforms.RandomHorizontalFlip(),
# transforms.CenterCrop(148),
transforms.Resize((image_size, image_size)),
transforms.ToTensor(),
]
)
return transform
class CustomMNIST(Dataset):
def __init__(self, train, with_channel=False) -> None:
super().__init__()
self.dataset = MNIST(root=str(DATA_PATH), train=train, download=True)
self.with_channel = with_channel
def __len__(self):
return len(self.dataset)
def __getitem__(self, index):
data = self.dataset.data[index]
targets = self.dataset.targets[index]
data = data/255.0
if self.with_channel:
data = data[None, ...] if isinstance(index, int) else data[:, None, ...]
return data, targets
# class CustomCelebA(Dataset):
# def __init__(self, split='train') -> None:
# super().__init__()
# self.dataset = CelebA(root=str(DATA_PATH), split=split, download=False)
# self.transform = self.default_data_transforms()
# self.att_idx = get_celeba_att()['smiling']
# self.image_size = self.__getitem__(0)[0].shape
# def __len__(self):
# return len(self.dataset)
# def __getitem__(self, index):
# pic, label = self.dataset[index]
# data = self.transform(pic)
# return data, label[self.att_idx]
# def default_data_transforms(self):
# SetRange = transforms.Lambda(lambda X: 2 * X - 1.)
# transform = transforms.Compose(
# [
# # transforms.RandomHorizontalFlip(),
# # transforms.CenterCrop(148),
# transforms.Resize((64, 64)),
# transforms.ToTensor(),
# # SetRange
# ]
# )
# return transform
class CustomCelebA(Dataset):
def __init__(self, root=None, split='train') -> None:
super().__init__()
if root is None:
root = DATA_PATH.joinpath('celeba_lmdb')
self.dataset = LMDBDataset(root=root, name='celeba', split=split, is_encoded=True)
self.transform = celeba_default_data_transforms()
img_size = CONFIG['celeba']['image_size']
self.image_size = (3, img_size, img_size)
att = CONFIG['celeba']['attribite']
self.att_idx = get_celeba_att()[att]
def __len__(self):
return self.dataset.dataset_size
def __getitem__(self, index):
pic, label = self.dataset[index]
data = self.transform(pic)
return data, label[self.att_idx]
class VAEWrapper(Dataset):
def __init__(self, vae: BaseVAE, dataset: Dataset, return_latent=True):
super(VAEWrapper, self).__init__()
# self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.device = 'cpu'
self.vae = deepcopy(vae)
self.vae.to(self.device)
self.dataset = dataset
self.return_latent = return_latent
self.cached_data = {'data': [], 'target': []}
# self._cache_data()
def __len__(self):
return len(self.dataset)
def __getitem__(self, index):
# return self.cached_data['data'][index], self.cached_data['target'][index]
data, targets = self.dataset[index]
data = data[None, ...]
if data.ndim == 3:
data = data[None, ...]
assert data.ndim == 4
latents = self._get_latents(data)
if not self.return_latent:
img = self.vae.decode(latents)
return img[0], targets
return latents[0], targets
@torch.no_grad()
def _cache_data(self):
print("="*50)
print("Caching the Data")
loader = DataLoader(self.dataset, num_workers=32)
for item in tqdm(loader, total=len(loader)):
data, targets = item
assert data.ndim == 4
latents = self._get_latents(data)
img = self.vae.decode(latents)
self.cached_data['data'].append(img[0].cpu())
self.cached_data['target'].append(targets.cpu())
print("="*50)
@torch.no_grad()
def _get_latents(self, data):
data = data.to(self.device)
ـ, z_batch, _ = self.vae.encode(data)
return z_batch
class LMDBDataset(Dataset):
def __init__(self, root, name="", split='train', is_encoded=False) -> None:
super().__init__()
self.split = split
self.name = name
lmdb_path = os.path.join(root, f'{self.split}.lmdb')
self.data_lmdb = lmdb.open(lmdb_path, readonly=True, max_readers=1,
lock=False, readahead=False, meminit=False)
self.is_encoded = is_encoded
data_size_path = Path(lmdb_path).joinpath(f'{self.split}_dsize.pkl')
with open(data_size_path, 'rb') as f:
self.dataset_size = pickle.load(f)
def __getitem__(self, index):
# target = [0]
with self.data_lmdb.begin(write=False, buffers=True) as txn:
data = txn.get(str(index).encode())
data, target = pickle.loads(data)
target = torch.tensor(target, dtype=torch.long)
if self.is_encoded:
img = Image.open(io.BytesIO(data))
img = img.convert('RGB')
else:
img = np.asarray(data, dtype=np.uint8)
# assume data is RGB
size = int(np.sqrt(len(img) / 3))
img = np.reshape(img, (size, size, 3))
img = Image.fromarray(img, mode='RGB')
return img, target
def __len__(self):
return self.dataset_size
x = CustomCelebA(root="./data/celeba_lmdb")