-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
271 lines (209 loc) · 8.29 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
from collections import defaultdict
from pathlib import Path
from torch.optim.optimizer import Optimizer
from torch.serialization import load
from torch.utils.data import dataset
from torch.utils.data.dataloader import DataLoader
from models import BaseVAE
import numpy as np
from tqdm.autonotebook import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim.lr_scheduler import ExponentialLR, ReduceLROnPlateau
from utils import prepare_tensorboard, save
from metrics import accuracy, balanced_accuracy
from running_mean import RunningMean
from torchmetrics import ConfusionMatrix
tensor = torch.Tensor
class VAETrainer(object):
def __init__(self,
model: BaseVAE,
optimizer: Optimizer,
train_loader: DataLoader,
val_loader: DataLoader = None,
multi_gpu: bool = False,
save_path: str = None,
use_mse: bool = False,
device=None,
beta=1) -> None:
super(VAETrainer, self).__init__()
self.train_loader = train_loader
self.val_loader = val_loader
self.vae = model
self.optimizer = optimizer
self.scheduler = ReduceLROnPlateau(self.optimizer, patience=5, mode='min', threshold=1e-2, factor=0.5)
self.save_path = save_path
# beta-vae parameters for loss function
self.beta = beta
self.use_mse = use_mse
if device is None:
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
else:
self.device = device
self.multi_gpu = False
if multi_gpu & (torch.cuda.device_count() > 1):
self.multi_gpu = True
def train(self, epochs):
"""
Train the network
"""
if self.multi_gpu:
self.vae = nn.DataParallel(self.vae)
tb = prepare_tensorboard('logs/run0')
for epoch in range(1, epochs+1):
training_loss, kl_loss, recon_loss = self.train_one_epoch('train', epoch)
tb.add_scalar("train-loss", training_loss, epoch)
tb.add_scalar("train-KL-loss", kl_loss, epoch)
tb.add_scalar("train-recon-loss", recon_loss, epoch)
if self.val_loader is not None:
val_loss, kl_loss, recon_loss = self.train_one_epoch('validation', epoch)
tb.add_scalar("val-loss", val_loss, epoch)
tb.add_scalar("val-KL-loss", kl_loss, epoch)
tb.add_scalar("val-recon-loss", recon_loss, epoch)
save(self.vae, self.save_path)
tb.close()
def train_one_epoch(self, split, epoch):
avg_total_loss, avg_recon_loss, avg_kl_loss = RunningMean(), RunningMean(), RunningMean()
if split == 'train':
loader = self.train_loader
else:
loader = self.val_loader
loop = tqdm(
enumerate(loader),
total=len(loader),
leave=True,
position=0,
)
loop.set_description("[train]")
for _, batch in loop:
if split == 'train':
total_loss, recon_loss, kl_loss = self.train_step(batch)
else:
total_loss, recon_loss, kl_loss = self.validation_step(batch)
avg_total_loss.update(total_loss)
avg_recon_loss.update(recon_loss)
avg_kl_loss.update(kl_loss)
loop.set_description(
f"[{split}] "
f"epoch = {epoch}, "
f"loss = {avg_total_loss.mean:0.4f}, "
f"recon_loss = {avg_recon_loss.mean:0.4f}, "
f"kl_loss = {avg_kl_loss.mean:0.4f}, "
)
return avg_total_loss.mean, avg_recon_loss.mean, avg_kl_loss.mean
def step(self, batch):
inputs, targets = batch
inputs = inputs.to(self.device)
targets = targets.to(self.device)
x_hat, mu, log_var = self.vae(inputs)
loss, recon_loss, kl_loss = self.vae_loss(
torch.flatten(x_hat),
torch.flatten(inputs),
mu, log_var
)
return loss, recon_loss, kl_loss
def train_step(self, batch):
self.vae.train()
loss, recon_loss, kl_loss = self.step(batch)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
return loss.item(), recon_loss.item(), kl_loss.item()
def validation_step(self, batch):
self.vae.eval()
loss, recon_loss, kl_loss = self.step(batch)
return loss.item(), recon_loss.item(), kl_loss.item()
def vae_loss(self, inputs: tensor, targets: tensor, mu: tensor, log_var: tensor):
if self.use_mse:
reconstruction_loss = F.mse_loss(inputs, targets, reduction='sum')
else:
reconstruction_loss = F.binary_cross_entropy(inputs, targets, reduction='sum')
batch_size = mu.shape[0]
reconstruction_loss /= batch_size
kl_loss = -0.5*(1 + log_var - mu.pow(2) - log_var.exp())
kl_loss = kl_loss.sum(1).mean(0)
loss = reconstruction_loss + self.beta * kl_loss
return loss, reconstruction_loss, kl_loss
class ClassifierTrainer(object):
def __init__(self,
model: nn.Module,
optimizer: torch.optim,
train_loader: DataLoader,
loss_fn,
val_loader: DataLoader = None,
multi_gpu: bool = False,
device: torch.device = None) -> None:
super().__init__()
self.train_loader = train_loader
self.val_loader = val_loader
self.model = model
self.optimizer = optimizer
self.loss_fn = loss_fn
self.train_stat = defaultdict(lambda:0.0)
self.val_stat = defaultdict(lambda:0.0)
if device is None:
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
else:
self.device = device
self.multi_gpu = False
if multi_gpu & (torch.cuda.device_count() > 1):
self.multi_gpu = True
self.model.to(self.device)
def train(self, epochs):
"""
Train the network
"""
if self.multi_gpu:
self.model = nn.DataParallel(self.model)
for epoch in range(1, epochs+1):
self.train_one_epoch('train', epoch)
if self.val_loader is not None:
self.train_one_epoch('val', epoch)
def train_one_epoch(self, split, epoch):
loss_stat, acc_stat = RunningMean(), RunningMean()
if split == 'train':
loader = self.train_loader
else:
loader = self.val_loader
loop = tqdm(
enumerate(loader),
total=len(loader),
leave=True,
position=0,
)
for _, batch in loop:
if split == 'train':
loss, acc = self.train_step(batch)
else:
loss, acc = self.val_step(batch)
loss_stat.update(loss)
acc_stat.update(acc)
loop.set_description(
f"[{split}] "
f"epoch={epoch:d}, "
f"loss={loss_stat.mean:.4f}, "
f"acc={acc_stat.mean:.4f}"
)
def step(self, batch):
inputs, targets = batch
inputs = inputs.to(self.device)
targets = targets.to(self.device)
targets = targets.long()
logits = self.model(inputs)
loss = self.loss_fn(logits, targets)
labels = logits.argmax(1)
acc = balanced_accuracy(labels, targets)
return loss, acc
def train_step(self, batch):
self.model.train()
loss, acc = self.step(batch)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
return loss.item(), acc.item()
@torch.no_grad()
def val_step(self, batch):
self.model.eval()
loss, acc = self.step(batch)
return loss.item(), acc.item()