-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_classifier.py
218 lines (168 loc) · 7.25 KB
/
train_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
from args import get_arguments
import numpy as np
import torch.nn as nn
import torch.utils.data
import torch.nn.functional as F
from tqdm import tqdm
from mnist import MnistLoader
from lcifr.code.attacks import PGD
from models import VAE, LatentClassifier, AutoEncoder, LatentEncoder
from dl2.training.supervised.oracles import DL2_Oracle
from lcifr.code.experiments.args_factory import get_args
from lcifr.code.constraints.general_categorical_constraint import GeneralCategoricalConstraint, SegmentConstraint
from utils import load, prepare_config
from attack import SegmentPDG
from celeba_models import CelebaVAE, EncoderCelebA, ClassifierCelebA, AutoEncoderCelebA
from datasets import CustomCelebA, VAEWrapper
from torch.utils.data import DataLoader
from metrics import accuracy, balanced_accuracy
import seaborn as sns
import matplotlib.pyplot as plt
# defining flags:
args = get_arguments()
config = prepare_config('./metadata.json')
vae_path = config["celeba_save_path"]['vae']
if args.robust:
ae_path = config["celeba_save_path"]['lcifr_autoencoder']
classifier_path = config["celeba_save_path"]['robust_classifier']
else:
ae_path = config["celeba_save_path"]['base_autoencoder']
classifier_path = config["celeba_save_path"]['base_classifier']
# parameters
lr = config['lcifr_experiment']['learning_rate']
dl2_lr = config['lcifr_experiment']['dl2_lr']
patience = config['lcifr_experiment']['patience']
weight_decay = config['lcifr_experiment']['weight_decay']
dl2_iters = config['lcifr_experiment']['dl2_iters']
dl2_weight = config['lcifr_experiment']['dl2_weight']
num_epochs = config['lcifr_experiment']['num_epochs_classifier']
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#### this part is for experimenting on mnist
# vae = CelebaVAE(latent_dim=16)
# vae.load_state_dict(
# torch.load(
# vae_path, map_location=torch.device('cpu')
# )
# )
# vae.to(device)
# latent_encoder = EncoderCelebA()
# latent_encoder.to(device)
# autoencoder = AutoEncoderCelebA(vae, latent_encoder)
# autoencoder.to(device)
# classifier = ClassifierCelebA(
# latent_encoder.flatten_shape, latent_encoder.num_classes)
# classifier.to(device)
# for param in autoencoder.parameters():
# param.requires_grad_(False)
# autoencoder.load_state_dict(
# torch.load(
# ae_path,
# map_location=lambda storage, loc: storage
# )
# )
# data = MnistLoader(batch_size=128, shuffle=True, normalize=False, split_ratio=0.8)
# train_loader, val_loader = data.train_loader, data.val_loader
# train_loader = get_latents(vae=vae, data_loader=train_loader, shuffle=True, device=device)
# val_loader = get_latents(vae=vae, data_loader=val_loader, shuffle=False, device=device)
latent_dim = config['vae_experiment']['latent_dim']
input_dim = config['celeba']['input_dim']
vae = CelebaVAE(latent_dim=latent_dim, input_dim=input_dim)
load(vae, vae_path)
vae.to(device)
latent_encoder = EncoderCelebA(input_dim=input_dim)
latent_encoder.to(device)
autoencoder = AutoEncoderCelebA(vae, latent_encoder)
load(autoencoder, ae_path)
autoencoder.to(device)
classifier = ClassifierCelebA(1024)
classifier.to(device)
# data = MnistLoader(batch_size=128, shuffle=True, normalize=False, split_ratio=0.8)
batch_size = config['lcifr_experiment']['batch_size']
num_workers = config['lcifr_experiment']['num_workers']
train_data, val_data = CustomCelebA(split='train'), CustomCelebA(split='valid')
train_data = VAEWrapper(vae=vae, dataset=train_data)
val_data = VAEWrapper(vae=vae, dataset=val_data)
train_loader = DataLoader(train_data, batch_size=batch_size,
num_workers=num_workers, shuffle=True, drop_last=True, pin_memory=True)
val_loader = DataLoader(val_data, batch_size=batch_size,
num_workers=num_workers, shuffle=False, drop_last=True, pin_memory=True)
delta = config['lcifr_experiment']['delta']
epsilon = config['lcifr_experiment']['epsilon']
latent_index = config['lcifr_experiment']['latent_index']
cre_loss = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(
classifier.parameters(), lr=lr,
weight_decay=weight_decay
)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer, 'min', patience=patience, factor=0.5, threshold=0.005
)
def run(autoencoder, classifier, optimizer, loader, split):
predictions, targets = [], []
tot_ce_loss = []
progress_bar = tqdm(loader)
if args.robust:
attack = PGD(
classifier, delta, F.cross_entropy,
clip_min=float('-inf'), clip_max=float('inf')
)
for data_batch, targets_batch in progress_bar:
batch_size = data_batch.shape[0]
data_batch = data_batch.to(device)
targets_batch = targets_batch.to(device)
targets_batch = targets_batch.long()
if split == 'train':
classifier.train()
latent_data = autoencoder.encode(data_batch)
if args.robust:
latent_data = attack.attack(
delta / 10, latent_data, 20, targets_batch,
targeted=False, num_restarts=1, random_start=True
)
logits = classifier(latent_data)
ce_loss = cre_loss(logits, targets_batch)
predictions_batch = classifier.predict(latent_data)
predictions.append(predictions_batch.detach().cpu())
targets.append(targets_batch.detach().cpu())
if split == 'train':
optimizer.zero_grad()
ce_loss.mean().backward()
optimizer.step()
tot_ce_loss.append(ce_loss.mean().item())
acc = balanced_accuracy(predictions, targets)
progress_bar.set_description(
f'[{split}] epoch={epoch:d}, ce_loss={np.mean(tot_ce_loss):.4f}, '
f'acc={acc:0.4f}'
)
predictions = torch.cat(predictions)
targets = torch.cat(targets)
# sns.histplot(predictions)
# plt.savefig('test.png')
# accuracy = accuracy_score(targets, predictions)
# balanced_accuracy = balanced_accuracy_score(targets, predictions)
# tn, fp, fn, tp = confusion_matrix(targets, predictions).ravel()
# f1 = f1_score(targets, predictions)
# writer.add_scalar('Accuracy/%s' % split, accuracy, epoch)
# writer.add_scalar('Balanced Accuracy/%s' % split, balanced_accuracy, epoch)
# writer.add_scalar('Cross Entropy/%s' % split, tot_ce_loss.mean(), epoch)
# writer.add_scalar('True Positives/%s' % split, tp, epoch)
# writer.add_scalar('False Negatives/%s' % split, fn, epoch)
# writer.add_scalar('True Negatives/%s' % split, tn, epoch)
# writer.add_scalar('False Positives/%s' % split, fp, epoch)
# writer.add_scalar('F1 Score/%s' % split, f1, epoch)
# writer.add_scalar('Learning Rate', optimizer.param_groups[0]['lr'], epoch)
# writer.add_scalar('Stat. Parity/%s' % split, tot_stat_par.mean(), epoch)
# writer.add_scalar('Equalized Odds/%s' % split, tot_eq_odds.mean(), epoch)
return tot_ce_loss
# print('saving model to', models_dir)
# writer = SummaryWriter(log_dir)
for epoch in range(num_epochs):
run(autoencoder, classifier, optimizer, train_loader, 'train')
autoencoder.eval()
classifier.eval()
valid_loss = run(autoencoder, classifier, optimizer, val_loader, 'valid')
scheduler.step(np.mean(valid_loss))
torch.save(
classifier.state_dict(), classifier_path
)
# writer.close()