-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvae.py
203 lines (164 loc) · 6.42 KB
/
vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import matplotlib.pyplot as plt
import torch
from numpy.core.fromnumeric import alen
from torch import optim
from torch.serialization import save
from torch.utils import data
from torch.utils.data.dataloader import DataLoader
from torchinfo import summary
from torchvision.utils import make_grid, save_image
from datasets import CustomCelebA, VAEWrapper
from models import VAE
from celeba_models import CelebaVAE, AttributeClassifierCelebA
from train import ClassifierTrainer, VAETrainer
from utils import load, image_to_vid
from tqdm import trange
import numpy as np
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if torch.cuda.is_available():
torch.cuda.empty_cache()
#
# data = MnistLoader(shuffle=True, normalize=False, batch_size=128)
# clf = LatentEncoder()
# clf.to(device)
# optimizer = optim.RMSprop(clf.parameters(), lr=1e-3)
#
# trainer = LatentTrainer(clf,
# optimizer,
# loss_fn=nn.CrossEntropyLoss(),
# train_loader=data.train_loader,
# val_loader=data.test_loader)
#
# trainer.train(epochs=10)
# torch.save(clf.state_dict(), 'latent_state_dict_v1')
# def weights_init(m):
# if isinstance(m, nn.Conv2d):
# nn.init.xavier_normal_(m.weight)
# nn.init.constant_(m.bias, 0.05)
def size_output_test():
dataset = CustomCelebA(split='train')
train_loader = DataLoader(dataset, batch_size=32, shuffle=True)
data = next(iter(train_loader))[0]
vae = CelebaVAE(latent_dim=32, input_dim=dataset.image_size)
print(vae.decode(vae.encode(data)[0]).shape, vae.shape)
# print(vae)
def train_vae():
batch_size = 64
dataset = CustomCelebA(split='train')
val_dataset = CustomCelebA(split='valid')
train_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True,
num_workers=32, pin_memory=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False,
num_workers=32, pin_memory=True)
vae = CelebaVAE(latent_dim=32, input_dim=dataset.image_size)
vae.to(device)
optimizer = optim.Adam(vae.parameters(), lr=1e-4)
trainer = VAETrainer(vae, optimizer, train_loader=train_loader, val_loader=val_loader,
beta=10, save_path='./final-models/celeba-vae-bce-v1')
trainer.train(epochs=10)
def generate_random_image():
dataset = CustomCelebA(split='train')
vae = CelebaVAE(latent_dim=32, input_dim=dataset.image_size)
vae.to(device)
load(vae, './final-models/celeba-vae-bce-v0')
vae.eval()
index = np.random.randint(0, len(dataset))
img = dataset[index][0].to(device)
img = img[None, ...]
z, _, _ = vae.encode(img)
for i in trange(0, 32):
Z = z.clone()
img = vae.decode(z)[0]
save_image(img, 'test.png')
comps = torch.linspace(-3, 3, 50)
img_list = []
for comp in comps:
Z[:, i] = comp
img = vae.decode(Z)[0]
img_list.append(img)
image_to_vid(img_list, path=f'./visualization-outputs/comp{i}.gif')
def generate_latent_interpolation(latent_index):
dataset = CustomCelebA(split='train')
vae = CelebaVAE(latent_dim=32, input_dim=dataset.image_size)
vae.to(device)
load(vae, './final-models/celeba-vae-bce-v0')
vae.eval()
index = np.random.randint(0, len(dataset))
img = dataset[index][0].to(device)
img = img[None, ...]
z, _, _ = vae.encode(img)
Z = z.clone()
img = vae.decode(z)[0]
save_image(img, 'test.png')
comps = torch.linspace(-3, 3, 8)
img_list = []
for comp in comps:
Z[:, latent_index] = comp
img = vae.decode(Z)
img_list.append(img)
images = torch.cat(img_list, dim=0)
a = make_grid(images)
save_image(a, 'test.png')
def generate_dataset():
dset = CustomCelebA(split='train')
img_size = dset.image_size
vae = CelebaVAE(latent_dim=32, input_dim=img_size)
vae.to(device)
load(vae, './final-models/celeba-vae-bce-v0')
vae.eval()
for i in trange(10):
z = torch.randn(1, 32, device=device)
img = vae.decode(z)
save_image(img, f"./data/fid_test/fake/{i}.jpg")
real, _ = dset[i]
save_image(real, f"./data/fid_test/real/{i}.jpg")
def train_classifier():
train_dset = CustomCelebA(split='train')
val_dset = CustomCelebA(split='valid')
img_size = train_dset.image_size
batch_size = 100
vae = CelebaVAE(latent_dim=32, input_dim=img_size)
vae.to(device)
load(vae, './final-models/celeba-vae-bce-v0')
vae.eval()
for param in vae.parameters():
param.requires_grad_(True)
# train_dset = VAEWrapper(dataset=train_dset, vae=vae)
# val_dset = VAEWrapper(dataset=val_dset, vae=vae)
train_loader = DataLoader(train_dset, batch_size=batch_size, shuffle=True,
drop_last=True, num_workers=32, pin_memory=True)
val_loader = DataLoader(val_dset, batch_size=batch_size, shuffle=False,
drop_last=True, num_workers=32, pin_memory=True)
model = AttributeClassifierCelebA(input_dim=img_size)
# print(model)
summary(model, input_size=(batch_size, *img_size))
loss_fn = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
trainer = ClassifierTrainer(model=model,
optimizer=optimizer,
loss_fn=loss_fn,
train_loader=train_loader,
val_loader=val_loader)
trainer.train(epochs=10)
def visualize_vae_outputs():
train_dset = CustomCelebA(split='train')
img_size = train_dset.image_size
vae = CelebaVAE(latent_dim=32, input_dim=img_size)
vae.to(device)
load(vae, './final-models/celeba-vae-bce-v0')
vae.eval()
for param in vae.parameters():
param.requires_grad_(False)
train_dset = VAEWrapper(dataset=train_dset, vae=vae, return_latent=False)
train_loader = DataLoader(train_dset, batch_size=32, shuffle=False, drop_last=True)
images, _ = next(iter(train_loader))
a = make_grid(images)
save_image(a, 'test.png')
if __name__ == "__main__":
# size_output_test()
# generate_random_image()
# train_vae()
# train_classifier()
# visualize_vae_outputs()
# generate_dataset()
generate_latent_interpolation(6)