-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathDinskyPlus.py
128 lines (108 loc) · 5.13 KB
/
DinskyPlus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
"""
@author: DJZ-Nodes
Dinsky Plus Generator - A node that generates Kandinsky-style abstract art
"""
import random
from PIL import Image, ImageDraw
import numpy as np
import torch
class DinskyPlus:
"""A ComfyUI node that generates Kandinsky-style abstract art"""
COLOR_PALETTES = {
"kandinsky": ['#69D2E7', '#A7DBD8', '#E0E4CC', '#F38630', '#FA6900', '#FF4E50', '#F9D423'],
"warm": ['#FF4E50', '#FC913A', '#F9D423', '#EDE574', '#E1F5C4'],
"cool": ['#69D2E7', '#A7DBD8', '#E0E4CC', '#B2C2C1', '#8AB8B2'],
"monochrome": ['#FFFFFF', '#D9D9D9', '#BFBFBF', '#8C8C8C', '#404040'],
"vibrant": ['#FF1E1E', '#FF9900', '#FFFF00', '#00FF00', '#0000FF', '#9900FF']
}
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"width": ("INT", {"default": 1024, "min": 64, "max": 4096}),
"height": ("INT", {"default": 1024, "min": 64, "max": 4096}),
"seed": ("INT", {"default": 0, "min": 0, "max": 4294967295}),
"num_shapes": ("INT", {"default": 100, "min": 1, "max": 1000}),
"min_size": ("INT", {"default": 10, "min": 1, "max": 500}),
"max_size": ("INT", {"default": 100, "min": 1, "max": 1000}),
"color_palette": (list(s.COLOR_PALETTES.keys()),),
"circle_weight": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.1}),
"rectangle_weight": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.1}),
"line_weight": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.1}),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "generate_art"
CATEGORY = "DJZ-Nodes"
def generate_art(self, width, height, seed, num_shapes, min_size, max_size,
color_palette, circle_weight, rectangle_weight, line_weight):
# Set random seed for reproducibility
# Ensure seed is within numpy's valid range
seed = seed % (2**32)
random.seed(seed)
np.random.seed(seed)
# Create a blank canvas
image = Image.new("RGB", (width, height), "white")
draw = ImageDraw.Draw(image)
# Get colors for selected palette
colors = self.COLOR_PALETTES[color_palette]
# Calculate shape type probabilities
total_weight = circle_weight + rectangle_weight + line_weight
shape_types = []
shape_weights = []
if circle_weight > 0:
shape_types.append('circle')
shape_weights.append(circle_weight)
if rectangle_weight > 0:
shape_types.append('rectangle')
shape_weights.append(rectangle_weight)
if line_weight > 0:
shape_types.append('line')
shape_weights.append(line_weight)
# Normalize weights
shape_weights = [w/total_weight for w in shape_weights]
# Generate random shapes
for _ in range(num_shapes):
shape_type = random.choices(shape_types, weights=shape_weights)[0]
color = random.choice(colors)
if shape_type == 'circle':
radius = random.randint(min_size, max_size)
x = random.randint(0, width)
y = random.randint(0, height)
draw.ellipse((x-radius, y-radius, x+radius, y+radius), fill=color, outline=None)
elif shape_type == 'rectangle':
x1 = random.randint(0, width)
y1 = random.randint(0, height)
size_w = random.randint(min_size, max_size)
size_h = random.randint(min_size, max_size)
x2 = min(x1 + size_w, width)
y2 = min(y1 + size_h, height)
draw.rectangle((x1, y1, x2, y2), fill=color, outline=None)
elif shape_type == 'line':
x1 = random.randint(0, width)
y1 = random.randint(0, height)
angle = random.uniform(0, 2 * np.pi)
length = random.randint(min_size, max_size)
x2 = int(x1 + length * np.cos(angle))
y2 = int(y1 + length * np.sin(angle))
line_width = max(1, min_size // 10) # Scale line width with min_size
draw.line((x1, y1, x2, y2), fill=color, width=line_width)
# Convert PIL image to tensor in the format ComfyUI expects (B,H,W,C)
# Convert to RGB if not already
if image.mode != 'RGB':
image = image.convert('RGB')
# Convert to numpy array and normalize to 0-1 range
image_np = np.array(image).astype(np.float32) / 255.0
# Convert to PyTorch tensor
image_tensor = torch.from_numpy(image_np)
# Ensure shape is (B,H,W,C)
if len(image_tensor.shape) == 3:
image_tensor = image_tensor.unsqueeze(0)
return (image_tensor,)
# Node registration for ComfyUI
NODE_CLASS_MAPPINGS = {
"DinskyPlus": DinskyPlus
}
NODE_DISPLAY_NAME_MAPPINGS = {
"DinskyPlus": "Dinsky Plus Generator"
}