-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathDjzDatamoshV8.py
266 lines (219 loc) · 10 KB
/
DjzDatamoshV8.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import torch
import numpy as np
from PIL import Image
from scipy.signal import convolve2d
from typing import Callable
class DjzDatamoshV8:
def __init__(self):
self.type = "DjzDatamoshV8"
self.output_node = True
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"images": ("IMAGE",),
"mask": ("MASK",), # New mask input
"sort_mode": (["luminance", "hue", "saturation", "laplacian"],),
"threshold": ("FLOAT", {
"default": 0.5,
"min": 0.0,
"max": 1.0,
"step": 0.05
}),
"rotation": ("INT", {
"default": -90,
"min": -180,
"max": 180,
"step": 90
}),
"multi_pass": ("BOOLEAN", {"default": False}),
"seed": ("INT", {
"default": 42,
"min": 0,
"max": 0xFFFFFFFF,
"step": 1
}),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "pixel_sort"
CATEGORY = "image/effects"
def calculate_hue(self, pixels):
"""Calculates the hue values for each pixel based on RGB channels"""
if isinstance(pixels, torch.Tensor):
pixels = pixels.cpu().numpy()
# Ensure consistent dtype
pixels = pixels.astype(np.float32)
r, g, b = np.split(pixels, 3, axis=-1)
hue = np.arctan2(np.sqrt(3) * (g - b), 2 * r - g - b)[..., 0]
# Normalize to 0-1 range
hue = (hue + np.pi) / (2 * np.pi)
return hue
def calculate_saturation(self, pixels):
"""Calculates the saturation values for each pixel"""
if isinstance(pixels, torch.Tensor):
pixels = pixels.cpu().numpy()
# Ensure consistent dtype
pixels = pixels.astype(np.float32)
r, g, b = np.split(pixels, 3, axis=-1)
maximum = np.maximum(r, np.maximum(g, b))
minimum = np.minimum(r, np.minimum(g, b))
# Add epsilon to avoid division by zero
denominator = np.maximum(maximum, 1e-7)
return ((maximum - minimum) / denominator)[..., 0]
def calculate_laplacian(self, pixels):
"""Calculates the Laplacian values for each pixel"""
if isinstance(pixels, torch.Tensor):
pixels = pixels.cpu().numpy()
# Ensure consistent dtype
pixels = pixels.astype(np.float32)
lum = np.average(pixels, axis=-1)
kernel = np.array([[0, -1, 0], [-1, 4, -1], [0, -1, 0]], dtype=np.float32)
laplacian = np.abs(convolve2d(lum, kernel, 'same', boundary='symm'))
# Normalize to 0-1 range
return (laplacian - np.min(laplacian)) / (np.max(laplacian) - np.min(laplacian) + 1e-7)
def calculate_luminance(self, pixels):
"""Calculates luminance values for each pixel"""
if isinstance(pixels, torch.Tensor):
pixels = pixels.cpu().numpy()
# Ensure consistent dtype
pixels = pixels.astype(np.float32)
# Use fixed coefficients for RGB to luminance conversion
coefficients = np.array([0.2126, 0.7152, 0.0722], dtype=np.float32)
return np.dot(pixels[..., :3], coefficients)
def sort_interval(self, interval, interval_indices):
"""Sort pixels within an interval"""
# Ensure stable sorting
return np.argsort(interval, kind='stable') + interval_indices
def process_row(self, row, row_values, edges, pixels, row_mask=None):
"""Process a single row of pixels with optional mask"""
# Find indices where edges occur
interval_indices = np.flatnonzero(edges[row])
# Handle empty intervals case
if len(interval_indices) == 0:
return pixels
# Split row values at edge points
split_values = np.split(row_values, interval_indices)
# Process intervals
for index, interval in enumerate(split_values[1:]):
if len(interval) > 0: # Only process non-empty intervals
# Apply mask if provided
if row_mask is not None:
mask_interval = row_mask[interval_indices[index]:interval_indices[index] + len(interval)]
if not np.any(mask_interval): # Skip if entire interval is masked out
continue
split_values[index + 1] = self.sort_interval(interval, interval_indices[index])
# Handle first interval
if len(split_values[0]) > 0:
split_values[0] = np.arange(split_values[0].size, dtype=np.int32)
# Merge sorted intervals
merged_order = np.concatenate(split_values)
# Apply sorting to each channel
for channel in range(pixels.shape[-1]):
pixels[row, :, channel] = pixels[row, merged_order.astype(np.int32), channel]
return pixels
def apply_pixel_sorting(self, image, mask, calculate_value_fn, threshold, rotation):
"""Apply pixel sorting effect to an image with mask"""
# Convert image and mask to numpy array if they're tensors
if isinstance(image, torch.Tensor):
image = image.cpu().numpy()
if isinstance(mask, torch.Tensor):
mask = mask.cpu().numpy()
# Ensure consistent dtype
image = image.astype(np.float32)
if mask is not None:
mask = mask.astype(np.float32)
# Rotate pixels and mask based on specified angle
k_rotations = (rotation // 90) % 4 # Normalize rotation to 0-3 range
rotated = np.rot90(image, k_rotations)
if mask is not None:
rotated_mask = np.rot90(mask, k_rotations)
else:
rotated_mask = None
# Calculate values for sorting
values = calculate_value_fn(rotated)
# Normalize values to 0-1 range
values_min = np.min(values)
values_max = np.max(values)
if values_max > values_min:
values = (values - values_min) / (values_max - values_min)
else:
values = np.zeros_like(values)
# Create mask based on threshold
threshold_mask = values > threshold
# Compute edges using the mask
edges = np.zeros_like(threshold_mask)
edges[:, 1:] = threshold_mask[:, 1:] != threshold_mask[:, :-1] # Detect changes in mask
# Process each row
for row in range(rotated.shape[0]):
row_mask = rotated_mask[row] if rotated_mask is not None else None
rotated = self.process_row(row, values[row], edges, rotated, row_mask)
# Rotate back
result = np.rot90(rotated, -k_rotations)
return result
def pixel_sort(self, images, mask, sort_mode, threshold, rotation, multi_pass, seed):
"""Main pixel sorting function with mask support
Arguments:
images: Batch of input images (BHWC format)
mask: Mask to control where sorting is applied (1 = sort, 0 = keep original)
sort_mode: Sorting method to use (luminance/hue/saturation/laplacian)
threshold: Value between 0-1 controlling segment creation
rotation: Angle to rotate sorting direction
multi_pass: Whether to apply all sorting modes sequentially
"""
print(f"Starting DjzDatamoshV8 pixel sorting with mode: {sort_mode}")
print(f"Input batch shape: {images.shape}")
print(f"Using random seed: {seed}")
# Set random seed for reproducibility
np.random.seed(seed)
if len(images.shape) != 4:
print("Warning: DjzDatamoshV8 requires batch of images in BHWC format")
return (images,)
try:
# Select value calculation function based on mode
mode_functions = {
"luminance": self.calculate_luminance,
"hue": self.calculate_hue,
"saturation": self.calculate_saturation,
"laplacian": self.calculate_laplacian
}
calculate_value_fn = mode_functions[sort_mode]
# Process each image in batch
batch_sorted = []
for idx in range(len(images)):
current_image = images[idx].cpu().numpy()
current_mask = mask[idx].cpu().numpy() if mask is not None else None
if multi_pass:
# Apply multiple sorting passes with different modes in fixed order
for mode_name in ["luminance", "hue", "saturation", "laplacian"]:
current_image = self.apply_pixel_sorting(
current_image,
current_mask,
mode_functions[mode_name],
threshold,
rotation
)
else:
# Single pass with selected mode
current_image = self.apply_pixel_sorting(
current_image,
current_mask,
calculate_value_fn,
threshold,
rotation
)
batch_sorted.append(current_image)
# Convert back to torch tensor
result = torch.from_numpy(np.stack(batch_sorted))
print(f"Processing complete. Output shape: {result.shape}")
return (result,)
except Exception as e:
print(f"Error during processing: {str(e)}")
return (images,)
# Register the node with ComfyUI
NODE_CLASS_MAPPINGS = {
"DjzDatamoshV8": DjzDatamoshV8
}
NODE_DISPLAY_NAME_MAPPINGS = {
"DjzDatamoshV8": "Djz Pixel Sort V8 Advanced"
}