-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathxyz_to_lab.py
68 lines (53 loc) · 1.59 KB
/
xyz_to_lab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
"""
CIE 1976 (L*, a*, b*)
reference: https://en.wikipedia.org/wiki/CIELAB_color_space#From_CIEXYZ_to_CIELAB
"""
import numpy as np
from enum import Enum
from functools import partial
class ReferenceWhite(Enum):
D65 = "D65"
D50 = "D50"
__reference_white_xyz = {
ReferenceWhite.D65: (95.0489, 100, 108.8840),
ReferenceWhite.D50: (96.4212, 100, 82.5188)
}
def get_reference_white_xyz(white: ReferenceWhite) -> np.array:
"""returns *normalized* xyz of reference white"""
if white in __reference_white_xyz:
# be careful with the normalization "/ 100"
# it's not mentioned in reference
return np.array(
__reference_white_xyz[white]
) / 100
else:
raise Exception
def __f(epsilon: float, kappa: float, x: float):
"""
reference: http://www.brucelindbloom.com/index.html?LContinuity.html
typical value of (epsilon, kappa) is (216/24389, 24389/27)
"""
if x > epsilon:
return x ** (1 / 3)
else:
return (kappa * x + 16) / 116
f = np.vectorize(
partial(__f, 216 / 24389, 24389 / 27),
otypes=[np.float64]
)
def xyz_to_lab(xyz: np.array, white: ReferenceWhite) -> np.array:
"""
:param white: enum of reference white
:param xyz: [x, y, z], normalized, each channel ranges in [0, 1]
:return:
"""
xyz_rw = get_reference_white_xyz(white) # reference white
xyz_r = xyz / xyz_rw # relative xyz
f_xyz = f(xyz_r)
return np.array(
[
116 * f_xyz[1] - 16,
500 * (f_xyz[0] - f_xyz[1]),
200 * (f_xyz[1] - f_xyz[2])
]
)