-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtomo_recon_tiled.py
158 lines (143 loc) · 4.6 KB
/
tomo_recon_tiled.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import numpy as np
import tomopy
from scipy.interpolate import interp1d
def find_nearest(data, value):
data = np.array(data)
return np.abs(data - value).argmin()
def rotcen_test2(
img_tomo,
img_bkg_avg,
img_dark_avg,
img_angle,
start=None,
stop=None,
steps=None,
sli=0,
block_list=[],
print_flag=1,
bkg_level=0,
txm_normed_flag=0,
denoise_flag=0,
fw_level=9,
algorithm='gridrec',
n_iter=5,
circ_mask_ratio=0.95,
options={},
atten=None,
clim=[],
dark_scale=1,
filter_name='None',
):
s = [1, data.shape[0], data.shape[1]]
if not atten is None:
ref_ang = atten[:, 0]
ref_atten = atten[:, 1]
fint = interp1d(ref_ang, ref_atten)
if denoise_flag:
addition_slice = 100
else:
addition_slice = 0
if sli == 0:
sli = int(s[1] / 2)
sli_exp = [
np.max([0, sli - addition_slice // 2]),
np.min([sli + addition_slice // 2 + 1, s[1]]),
]
tomo_angle = np.arrayimg_angle
theta = tomo_angle / 180.0 * np.pi
img_tomo = np.array(img_tomo[:, sli_exp[0] : sli_exp[1], :])
if txm_normed_flag:
prj_norm = img_tomo
else:
img_bkg = np.array(img_bkg_avg[:, sli_exp[0] : sli_exp[1], :])
img_dark = np.array(img_dark_avg[:, sli_exp[0] : sli_exp[1], :]) / dark_scale
prj = (img_tomo - img_dark) / (img_bkg - img_dark)
if not atten is None:
for i in range(len(tomo_angle)):
att = fint(tomo_angle[i])
prj[i] = prj[i] / att
prj_norm = -np.log(prj)
f.close()
prj_norm = denoise(prj_norm, denoise_flag)
prj_norm[np.isnan(prj_norm)] = 0
prj_norm[np.isinf(prj_norm)] = 0
prj_norm[prj_norm < 0] = 0
prj_norm -= bkg_level
prj_norm = tomopy.prep.stripe.remove_stripe_fw(
prj_norm, level=fw_level, wname="db5", sigma=1, pad=True
)
"""
if denoise_flag == 1: # denoise using wiener filter
ss = prj_norm.shape
for i in range(ss[0]):
prj_norm[i] = skr.wiener(prj_norm[i], psf=psf, reg=reg, balance=balance, is_real=is_real, clip=clip)
elif denoise_flag == 2:
from skimage.filters import gaussian as gf
prj_norm = gf(prj_norm, [0, 1, 1])
"""
s = prj_norm.shape
if len(s) == 2:
prj_norm = prj_norm.reshape(s[0], 1, s[1])
s = prj_norm.shape
if theta[-1] > theta[1]:
pos = find_nearest(theta, theta[0] + np.pi)
else:
pos = find_nearest(theta, theta[0] - np.pi)
block_list = list(block_list) + list(np.arange(pos + 1, len(theta)))
if len(block_list):
allow_list = list(set(np.arange(len(prj_norm))) - set(block_list))
prj_norm = prj_norm[allow_list]
theta = theta[allow_list]
if start == None or stop == None or steps == None:
start = int(s[2] / 2 - 50)
stop = int(s[2] / 2 + 50)
steps = 26
cen = np.linspace(start, stop, steps)
img = np.zeros([len(cen), s[2], s[2]])
for i in range(len(cen)):
if print_flag:
print("{}: rotcen {}".format(i + 1, cen[i]))
if algorithm == 'gridrec':
img[i] = tomopy.recon(
prj_norm[:, addition_slice : addition_slice + 1],
theta,
center=cen[i],
algorithm="gridrec",
filter_name=filter_name
)
elif 'astra' in algorithm:
img[i] = tomopy.recon(
prj_norm[:, addition_slice : addition_slice + 1],
theta,
center=cen[i],
algorithm=tomopy.astra,
options=options
)
else:
img[i] = tomopy.recon(
prj_norm[:, addition_slice : addition_slice + 1],
theta,
center=cen[i],
algorithm=algorithm,
num_iter=n_iter,
filter_name=filter_name
)
img = tomopy.circ_mask(img, axis=0, ratio=circ_mask_ratio)
return img, cen
def denoise(prj, denoise_flag):
if denoise_flag == 1: # Wiener denoise
import skimage.restoration as skr
ss = prj.shape
psf = np.ones([2, 2]) / (2**2)
reg = None
balance = 0.3
is_real = True
clip = True
for j in range(ss[0]):
prj[j] = skr.wiener(
prj[j], psf=psf, reg=reg, balance=balance, is_real=is_real, clip=clip
)
elif denoise_flag == 2: # Gaussian denoise
from skimage.filters import gaussian as gf
prj = gf(prj, [0, 1, 1])
return prj