-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathasm-cli.py
687 lines (548 loc) · 21.7 KB
/
asm-cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
from typing import Optional
import typer
app = typer.Typer()
@app.command()
def setup_paths(
downloads: Optional[str] = typer.Option(None),
presets: Optional[str] = typer.Option(None),
genetic: Optional[str] = typer.Option(None),
model: Optional[str] = typer.Option(None),
audio: Optional[str] = typer.Option(None),
midi: Optional[str] = typer.Option(None),
):
from pathlib import Path
from src.config.base import REGISTRY
from src.config.registry_sections import PathSection
path_kwargs = {}
if downloads is not None:
path_kwargs["downloads"] = downloads
if presets is not None:
path_kwargs["presets"] = presets
if genetic is not None:
path_kwargs["genetic"] = genetic
if model is not None:
path_kwargs["model"] = model
if audio is not None:
path_kwargs["audio"] = audio
if midi is not None:
path_kwargs["midi"] = midi
resolved_kwargs = {}
for k, v in path_kwargs.items():
resolved_path = Path(v).resolve()
resolved_kwargs[k] = resolved_path
if len(resolved_path.suffix) == 0:
resolved_path.mkdir(parents=True, exist_ok=True)
else:
resolved_path.parent.mkdir(parents=True, exist_ok=True)
REGISTRY.PATH = PathSection(**resolved_kwargs)
REGISTRY.commit()
@app.command()
def update_registry(
fixture: str = typer.Argument(
...,
help=(
"Path to fixture file (Optionally append ::{class_name} at end of"
" file name to load a specific class)"
),
)
):
import re
from importlib.util import module_from_spec, spec_from_file_location
from pathlib import Path
from src.config.base import REGISTRY
from src.config.registry_sections import RegistrySectionsMap
class AmbiguousConfigError(ValueError):
pass
node_match = re.search(r"::\s*[A-Za-z_]\w*\s*$", fixture)
if node_match:
node = node_match.group(0).strip()[2:]
path = Path(fixture[: node_match.start()]).resolve()
else:
node = None
path = Path(fixture).resolve()
spec = spec_from_file_location(path.name, path.as_posix())
module = module_from_spec(spec)
spec.loader.exec_module(module)
if node is not None:
if not hasattr(module, node):
raise ValueError(f"No config class named {node} found in {path}")
section_config = getattr(module, node)
section_name = REGISTRY.classify_section(section_config)
setattr(REGISTRY, section_name, section_config)
else:
section_matches = {k: [] for k in RegistrySectionsMap.keys()}
for attr in dir(module):
if attr.startswith("_"):
continue
section_config = getattr(module, attr)
try:
section_name = REGISTRY.classify_section(section_config)
except ValueError:
continue
section_matches[section_name].append(section_config)
if len(section_matches[section_name]) > 1:
raise AmbiguousConfigError(
f"Multiple {section_name} sections found in {path} - Resolve"
" ambiguity by separating into multiple files or using"
" ::{class_name} at end of file to specify a specific class"
)
for section_name, section_config in section_matches.items():
if len(section_config) == 1:
setattr(REGISTRY, section_name, section_config[0])
REGISTRY.commit()
@app.command()
def inspect_registry():
"""
Display the current registry values.
"""
from src.config.base import REGISTRY
for k, v in dict(REGISTRY).items():
typer.echo(f"{k}: {v}")
# TODO : display info about blobs - number of blobs, combined size of blobs, etc.
@app.command()
def reset():
"""
Reset the registry to default values, drop tables, and remove generated data.
"""
from src.config.base import REGISTRY, Registry
from src.database.factory import DBFactory
if REGISTRY.DATABASE is not None:
from src.daw.audio_model import AudioBridgeTable # NOQA: F401
from src.daw.synth_model import SynthParamsTable # NOQA: F401
from src.utils.loss_model import LossTable # NOQA: F401
db_factory = DBFactory(engine_url=REGISTRY.DATABASE.url)
db = db_factory()
db.drop_tables()
REGISTRY.clear_blobs()
REGISTRY = Registry()
REGISTRY.commit()
@app.command()
def mono_setup():
"""
Sets up particular project elements for the mono benchmark setting.
"""
from uuid import uuid4
from src.config.base import REGISTRY
from src.midi.generation import mono_midi
file = mono_midi()
save_path = REGISTRY.PATH.midi / f"{str(uuid4())}.mid"
save_path = save_path.resolve()
file.save(save_path)
REGISTRY.add_blob(save_path)
@app.command()
def setup_diva_presets():
import json
from hashlib import md5
from multiprocessing.pool import ThreadPool
from src.config.base import REGISTRY
from src.flow_synthesizer.api import load_diva_presets
def _save(preset: dict):
md5_hexd = md5(json.dumps(preset, sort_keys=True).encode("utf-8")).hexdigest()
save_path = (REGISTRY.PATH.presets / md5_hexd).with_suffix(".json")
with save_path.open("w") as f:
json.dump(preset, f, indent=4)
REGISTRY.add_blob(save_path)
with ThreadPool() as p:
p.map(_save, load_diva_presets())
@app.command()
def partition_midi_files(directory: list[str] = typer.Option([])):
"""
Takes a list of directories containing midi files and partitions them into
fixed size chunks.
"""
from pathlib import Path
from uuid import uuid4
from warnings import warn
from mido import MidiFile
from tqdm import tqdm
from src.config.base import REGISTRY
from src.midi.partition import MidiProperties, partition_midi
for dir in directory:
file_paths = Path(dir).rglob("*.mid")
midi_files = []
for i, path in enumerate(file_paths):
try:
midi_files.append(MidiFile(path))
except OSError as e:
warn(f"OSError: Could not open {path}: {e}")
except ValueError as e:
warn(f"ValueError: Could not open {path}: {e}")
except Exception as e:
warn(f"Could not open {path}: {e}")
if i > 500:
break
if len(midi_files) == 0:
warn(f"No midi files found in directory {dir}")
continue
partitioned_files = partition_midi(
midi_files, properties=MidiProperties(max_silence_ratio=0.4, max_voices=8)
)
for file in tqdm(partitioned_files):
save_path = REGISTRY.PATH.midi / f"{str(uuid4())}.mid"
save_path = save_path.resolve()
file.save(save_path)
REGISTRY.add_blob(save_path)
@app.command()
def setup_relational_models(
synth_path: Optional[str] = typer.Option(None),
engine_url: Optional[str] = typer.Option(None),
):
"""
Create tables in a local database for storing audio files and VST
parameters.
"""
from pathlib import Path
from src.config.base import REGISTRY
from src.config.registry_sections import SynthSection
from src.database.factory import DBFactory
from src.daw.factory import SynthHostFactory
db_factory_kwargs = dict()
if engine_url is not None:
db_factory_kwargs["engine_url"] = engine_url
db_factory = DBFactory(**db_factory_kwargs)
if synth_path is not None:
if REGISTRY.SYNTH is not None:
REGISTRY.SYNTH = SynthSection(
synth_path=Path(synth_path),
sample_rate=REGISTRY.SYNTH.sample_rate,
buffer_size=REGISTRY.SYNTH.buffer_size,
bpm=REGISTRY.SYNTH.bpm,
duration=REGISTRY.SYNTH.duration,
)
else:
REGISTRY.SYNTH = SynthSection(synth_path=Path(synth_path))
elif REGISTRY.SYNTH is None:
raise ValueError("No synth path specified and no SYNTH found in registry")
sh_factory = SynthHostFactory(**dict(REGISTRY.SYNTH))
synth_host = sh_factory()
definition_path = synth_host.create_parameter_table()
typer.echo(
f"Created model and table definition for {REGISTRY.SYNTH.synth_path} at"
f" {definition_path}"
)
from src.database.dataset import DatasetParamsTable # NOQA: F401
from src.daw.audio_model import AudioBridgeTable # NOQA: F401
from src.daw.synth_model import SynthParamsTable # NOQA: F401
from src.flow_synthesizer.checkpoint import ( # NOQA: F401
FlowSynthParamsTable,
ModelCheckpointTable,
TrainMetadataParamsTable,
)
from src.utils.loss_model import LossTable # NOQA: F401
db = db_factory()
db.create_tables()
db_factory.register(commit=True)
@app.command()
def generate_param_triples(
num_presets: Optional[int] = typer.Option(11000),
num_midi: Optional[int] = typer.Option(500),
pairs: Optional[int] = typer.Option(10),
preset_glob: str = typer.Option("*.fxp"),
):
"""
Generate triples of audio files with corresponding midi files and
parameters from a VST instrument.
"""
import random
from warnings import warn
import torch
from librosa.util import valid_audio
from librosa.util.exceptions import ParameterError
from sqlalchemy.exc import IntegrityError
from tqdm import tqdm
from src.config.base import REGISTRY
from src.config.registry_sections import DatasetSection
from src.database.factory import DBFactory
from src.daw.audio_model import AudioBridgeTable
from src.daw.factory import SynthHostFactory
from src.daw.signal_processing import silent_signal
from src.midi.generation import generate_midi
sh_factory = SynthHostFactory(**dict(REGISTRY.SYNTH))
db_factory = DBFactory(engine_url=REGISTRY.DATABASE.url)
if REGISTRY.DATASET is not None:
REGISTRY.DATASET.num_presets += num_presets
REGISTRY.DATASET.num_midi += num_midi
REGISTRY.DATASET.pairs = (
REGISTRY.DATASET.pairs * REGISTRY.DATASET.num_presets + pairs * num_presets
) / (REGISTRY.DATASET.num_presets + num_presets)
else:
REGISTRY.DATASET = DatasetSection(
num_presets=num_presets, num_midi=num_midi, pairs=pairs
)
REGISTRY.commit()
synth_host = sh_factory()
db = db_factory()
midi_paths = list(REGISTRY.PATH.midi.glob("*.mid"))
if num_midi is None:
num_midi = len(midi_paths)
if pairs is None:
pairs = num_midi
if len(midi_paths) < num_midi:
typer.echo(f"Generating {num_midi - len(midi_paths)} additional midi files")
generate_midi(number_of_files=num_midi - len(midi_paths))
midi_paths = list(REGISTRY.PATH.midi.glob("*.mid"))
preset_paths = list(REGISTRY.PATH.presets.glob(preset_glob))
presets = [synth_host.load_preset(path) for path in preset_paths]
if num_presets is None:
num_presets = len(presets)
if len(presets) < num_presets:
typer.echo(f"Generating {num_presets - len(presets)} additional presets")
presets.extend(
[
[param[-1] for param in synth_host.random_patch()]
for _ in range(num_presets - len(presets))
]
)
random.shuffle(midi_paths)
random.shuffle(presets)
midi_paths = midi_paths[:num_midi]
presets = presets[:num_presets]
for i, preset in enumerate(tqdm(presets, leave=True)):
synth_host.set_patch(preset)
synth_params = synth_host.get_patch_as_model(table=True)
synth_params_id = synth_params.id
try:
db.safe_add([synth_params])
except IntegrityError as e:
if "UNIQUE constraint failed" in str(e):
warn(str(e))
continue
else:
raise e
for j in tqdm(range(pairs), leave=False):
midi_file_path = midi_paths[(i + j) % len(midi_paths)]
synth_host.set_patch(preset)
audio = synth_host.render(midi_file_path)
audio_file_path = REGISTRY.PATH.audio / (midi_file_path.name).replace(
midi_file_path.suffix, f"_{i}.pt"
)
attempts_left = 2
while attempts_left:
attempts_left -= 1
try:
valid_audio(audio)
if silent_signal(audio, threshold=1e-4):
raise ParameterError
break
except ParameterError:
synth_host.random_patch(apply=True)
synth_params = synth_host.get_patch_as_model(table=True)
synth_params_id = synth_params.id
db.safe_add([synth_params])
audio = synth_host.render(midi_file_path)
else:
typer.echo(f"Skipping invalid audio: {audio_file_path}")
continue
audio_as_tensor = torch.from_numpy(audio).float()
torch.save(audio_as_tensor, audio_file_path)
REGISTRY.add_blob(audio_file_path)
audio_bridge = AudioBridgeTable(
audio_path=str(audio_file_path),
midi_path=str(midi_file_path),
synth_params=synth_params_id,
test_flag=True if random.random() < 0.1 else False,
)
db.safe_add([audio_bridge])
@app.command()
def process_audio(
chunk_size: int = typer.Option(512),
reprocess: bool = typer.Option(False),
num_workers: int = typer.Option(4),
):
from multiprocessing.pool import ThreadPool
from pathlib import Path
import torch
from sqlalchemy import func
from sqlmodel import select
from tqdm import tqdm
from src.config.base import PYTORCH_DEVICE, REGISTRY
from src.database.factory import DBFactory
from src.daw.audio_model import AudioBridgeTable
from src.daw.signal_processing import SIGNAL_PROCESSOR, SignalProcessor
from src.daw.synth_model import SynthParamsTable # NOQA: F401
db_factory = DBFactory(engine_url=REGISTRY.DATABASE.url)
db = db_factory()
if reprocess:
query = select(AudioBridgeTable)
else:
query = select(AudioBridgeTable).where(
AudioBridgeTable.processed_path.is_(None)
)
finalized_instances = []
def _save(args) -> AudioBridgeTable:
processed, bridge = args
save_path = REGISTRY.PATH.processed_audio / Path(bridge.audio_path).name
bridge.processed_path = str(save_path.resolve())
torch.save(processed, save_path)
REGISTRY.add_blob(save_path)
return bridge
with db.session() as session:
total_audio_bridges = session.exec(
select(func.count()).select_from(query.subquery())
).all()[0]
if SIGNAL_PROCESSOR.fit is not None:
train_bridges = []
for offset in tqdm(range(0, total_audio_bridges, chunk_size), leave=True):
with db.session() as session:
audio_bridges = session.exec(
query.limit(chunk_size).offset(offset)
).all()
train_bridges.extend(
[bridge for bridge in audio_bridges if not bridge.test_flag]
)
SIGNAL_PROCESSOR.fit(train_bridges)
REGISTRY.SIGNAL_PROCESSING.pipeline = tuple(SIGNAL_PROCESSOR._processor)
REGISTRY.commit()
for offset in tqdm(range(0, total_audio_bridges, chunk_size), leave=True):
with db.session() as session:
audio_bridges = session.exec(query.limit(chunk_size).offset(offset)).all()
signals = [
torch.load(bridge.audio_path, map_location=PYTORCH_DEVICE)
for bridge in audio_bridges
]
if PYTORCH_DEVICE.type == "cpu":
processed = SignalProcessor.concurrent_batch_process(
signals, num_workers=num_workers
)
else:
processed = SignalProcessor.batch_process(signals)
with ThreadPool() as p:
finalized_instances.extend(p.map(_save, zip(processed, audio_bridges)))
db.safe_add(finalized_instances)
@app.command()
def train_model(validation_split: Optional[float] = typer.Option(0.1)):
"""
Train a model to estimate parameters.
"""
from torch.utils.data import DataLoader, random_split
from src.config.base import REGISTRY
from src.database.dataset import FlowSynthDataset
from src.database.factory import DBFactory
from src.flow_synthesizer.api import get_model, prepare_registry
db_factory = DBFactory(engine_url=REGISTRY.DATABASE.url)
db = db_factory()
dataset = FlowSynthDataset(db, shuffle=True)
prepare_registry(dataset=dataset, commit=True)
train_kwargs = dict(epochs=REGISTRY.TRAINMETA.epochs)
if validation_split is not None:
train_size = int(len(dataset) * (1 - validation_split))
validation_size = len(dataset) - train_size
train_dataset, validation_dataset = random_split(
dataset, [train_size, validation_size]
)
train_loader = DataLoader(
train_dataset, batch_size=REGISTRY.TRAINMETA.batch_size
)
validation_loader = DataLoader(
validation_dataset, batch_size=REGISTRY.TRAINMETA.batch_size
)
train_kwargs["train_loader"] = train_loader
train_kwargs["validation_loader"] = validation_loader
else:
train_loader = DataLoader(dataset, batch_size=REGISTRY.TRAINMETA.batch_size)
train_kwargs["train_loader"] = train_loader
model = get_model()
losses = model.train(**train_kwargs)
save_path = REGISTRY.PATH.model / f"model-{model.id}.pkl"
save_path = save_path.resolve()
typer.echo(f"Saving model to {save_path}")
model.save(save_path)
REGISTRY.FLOWSYNTH.active_model_path = save_path
REGISTRY.commit()
db.add(losses)
@app.command()
def test_model(model_path: Optional[str] = typer.Option(None)):
"""
Test the trained model.
"""
from pathlib import Path
from src.config.base import REGISTRY
from src.database.dataset import FlowSynthDataset
from src.database.factory import DBFactory
from src.flow_synthesizer.api import evaluate_inference
from src.flow_synthesizer.base import ModelWrapper
if model_path is None and REGISTRY.FLOWSYNTH.active_model_path is None:
raise ValueError(
f"Model path not specified and {REGISTRY.FLOWSYNTH.active_model_path=}"
)
model = ModelWrapper.load(
REGISTRY.FLOWSYNTH.active_model_path if model_path is None else Path(model_path)
)
db_factory = DBFactory(engine_url=REGISTRY.DATABASE.url)
db = db_factory()
test_dataset = FlowSynthDataset(db, test_flag=True)
losses = evaluate_inference(model, test_dataset.audio_bridges)
db.add(losses)
@app.command()
def test_genetic_algorithm(test_limit: int = typer.Option(500)):
from src.config.base import REGISTRY
from src.database.dataset import FlowSynthDataset
from src.database.factory import DBFactory
from src.genetic.evaluation import evaluate_ga
db_factory = DBFactory(engine_url=REGISTRY.DATABASE.url)
db = db_factory()
test_dataset = FlowSynthDataset(db, test_flag=True)
losses = evaluate_ga(
audio_bridges=test_dataset.audio_bridges,
test_limit=test_limit,
)
db.add(losses)
@app.command()
def evaluate_ga_populations():
import dill
from sqlmodel import select
from src.config.base import REGISTRY
from src.database.factory import DBFactory
from src.daw.audio_model import AudioBridgeTable
from src.genetic.base import SimplifiedIndividual
from src.genetic.evaluation import evaluate_population
population_paths = REGISTRY.PATH.genetic.glob("*population.pkl")
db_factory = DBFactory(engine_url=REGISTRY.DATABASE.url)
db = db_factory()
pairs: list[tuple[AudioBridgeTable, list[SimplifiedIndividual]]] = []
with db.session() as session:
for path in population_paths:
like_str = "%" + path.name.replace("_population.pkl", ".pt")
query = select(AudioBridgeTable).where(
AudioBridgeTable.audio_path.like(like_str)
)
matches = session.exec(query).all()
if len(matches) > 1:
raise ValueError(
f"Found {len(matches)} matches for {path} - expected at most 1"
)
with path.open("rb") as f:
population = dill.load(f)
pairs.append((matches[0], population))
for pair in pairs:
losses = evaluate_population(bridge=pair[0], simplified_population=pair[1])
db.add(losses)
@app.command()
def estimate_synth_params(
model_path: Optional[str] = typer.Option(None),
audio_path: str = typer.Option(...),
# patch_output: str = typer.Option(...),
):
"""
Estimate synth parameters from an audio signal.
"""
from pathlib import Path
import torch
from src.config.base import REGISTRY
from src.database.dataset import load_formatted_audio
from src.daw.factory import SynthHostFactory
from src.flow_synthesizer.base import ModelWrapper
model = ModelWrapper.load(
REGISTRY.FLOWSYNTH.active_model_path if model_path is None else Path(model_path)
)
sh_factory = SynthHostFactory(**dict(REGISTRY.SYNTH))
synth_host = sh_factory()
formatted_signal, signal = load_formatted_audio( # TODO: Report confidence
audio_path
)
with torch.no_grad():
params = model(formatted_signal)
synth_host.set_patch(params[0].tolist())
typer.echo(synth_host.get_patch_as_model()) # TODO : save as .fxp
if __name__ == "__main__":
app()