From 37bad95aaed078f99d5cd025266459bf808266aa Mon Sep 17 00:00:00 2001 From: fan-ziqi Date: Wed, 11 Dec 2024 19:35:22 +0800 Subject: [PATCH] docs: add requirements.txt --- README.md | 14 ++++++++------ 1 file changed, 8 insertions(+), 6 deletions(-) diff --git a/README.md b/README.md index 16bc5dc9..18ed9e74 100644 --- a/README.md +++ b/README.md @@ -45,6 +45,7 @@ First run `git lfs fetch --all` to fetch all files stored in git-lfs. 1. Install [IsaacGym](https://developer.nvidia.com/isaac-gym), install using **python 3.8**. 2. Once IG and PyTorch are installed, from the repository root install the Phys-Anim package and its dependencies with: ``` +pip install -r requirements.txt pip install -e . pip install -e isaac_utils pip install -e poselib @@ -80,6 +81,7 @@ For Linux: alias PYTHON_PATH=" -p" ``` 3. Once IsaacLab is installed, from the protomotions repository root, install the Physical Animation package and its dependencies with: ``` +PYTHON_PATH -m pip install -r requirements.txt PYTHON_PATH -m pip install -e . PYTHON_PATH -m pip install -e isaac_utils PYTHON_PATH -m pip install -e poselib @@ -140,7 +142,7 @@ task with the provided motions. ### Path Following One such task for AMP is path following. The character needs to follow a set of markers. -To provide AMP with a path following task, similar to +To provide AMP with a path following task, similar to [PACER](https://research.nvidia.com/labs/toronto-ai/trace-pace/), run the experiment `+exp=path_follower`. @@ -251,8 +253,8 @@ Motions can be visualized via kinematic replay by running `PYTHON_PATH phys_anim ## Download Data -1. Download the [SMPL](https://smpl.is.tue.mpg.de/) v1.1.0 parameters and place them in the `data/smpl/` folder. Rename the files basicmodel_neutral_lbs_10_207_0_v1.1.0, basicmodel_m_lbs_10_207_0_v1.1.0.pkl, basicmodel_f_lbs_10_207_0_v1.1.0.pkl to SMPL_NEUTRAL.pkl, SMPL_MALE.pkl and SMPL_FEMALE.pkl. -2. Download the [SMPL-X](https://smpl-x.is.tue.mpg.de/) v1.1 parameters and place them in the `data/smpl/` folder. Rename the files to SMPLX_NEUTRAL.pkl, SMPLX_MALE.pkl and SMPLX_FEMALE.pkl. +1. Download the [SMPL](https://smpl.is.tue.mpg.de/) v1.1.0 parameters and place them in the `data/smpl/` folder. Rename the files basicmodel_neutral_lbs_10_207_0_v1.1.0, basicmodel_m_lbs_10_207_0_v1.1.0.pkl, basicmodel_f_lbs_10_207_0_v1.1.0.pkl to SMPL_NEUTRAL.pkl, SMPL_MALE.pkl and SMPL_FEMALE.pkl. +2. Download the [SMPL-X](https://smpl-x.is.tue.mpg.de/) v1.1 parameters and place them in the `data/smpl/` folder. Rename the files to SMPLX_NEUTRAL.pkl, SMPLX_MALE.pkl and SMPLX_FEMALE.pkl. 3. Download the [AMASS](https://amass.is.tue.mpg.de/) dataset. 4. Download the [SAMP](https://samp.is.tue.mpg.de/) dataset. @@ -326,14 +328,14 @@ Also consider citing these prior works that helped contribute to this project: title={Perpetual Humanoid Control for Real-time Simulated Avatars}, booktitle={International Conference on Computer Vision (ICCV)}, year={2023} -} +} @inproceedings{rempeluo2023tracepace, author={Rempe, Davis and Luo, Zhengyi and Peng, Xue Bin and Yuan, Ye and Kitani, Kris and Kreis, Karsten and Fidler, Sanja and Litany, Or}, title={Trace and Pace: Controllable Pedestrian Animation via Guided Trajectory Diffusion}, booktitle={Conference on Computer Vision and Pattern Recognition (CVPR)}, year={2023} -} +} @inproceedings{hassan2023synthesizing, title={Synthesizing physical character-scene interactions}, @@ -345,7 +347,7 @@ Also consider citing these prior works that helped contribute to this project: ``` # References and Thanks -This project repository builds upon the shoulders of giants. +This project repository builds upon the shoulders of giants. * [IsaacGymEnvs](https://github.com/isaac-sim/IsaacGymEnvs) for reference IsaacGym code. For example, terrain generation code. * [OmniIsaacGymEnvs](https://github.com/isaac-sim/OmniIsaacGymEnvs) for reference IsaacSim code. * [DeepMimic](https://github.com/xbpeng/DeepMimic) our full body tracker (Mimic) can be seen as a direct extension of DeepMimic.