-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfft.h
375 lines (329 loc) · 10.3 KB
/
fft.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
//fft.h
#ifndef NK_FFT
#define NK_FFT
#include <iostream>
#include <memory>
#include <algorithm>
#include <vector>
#include "fftw32/include/fftw3.h"
#pragma comment(lib, "libfftw3f-3.lib")
#pragma comment(lib, "libfftw3-3.lib")
#pragma comment(lib, "libfftw3l-3.lib")
namespace MyAlg
{
using std::shared_ptr;
using std::unique_ptr;
enum shift_flag
{
In,
Out
};
//fftw_plan fftw_plan_dft_r2c_1d(int n, double *in, fftw_complex *out, unsigned flags);
//flags: FFTW_ESTIMATE 单次执行速度快 FFTW_MEASURE 对同样大小的数据多次执行速度快
template<bool flag>
struct Select1D
{
static fftw_plan fft(int n, double *in, fftw_complex *out)
{
return fftw_plan_dft_r2c_1d(n, in, out, FFTW_ESTIMATE);
}
};
template<>
struct Select1D<false>
{
static fftw_plan fft(int n, double *in, fftw_complex *out)
{
return fftw_plan_dft_r2c_1d(n, in, out, FFTW_MEASURE);
}
};
template<bool IsEstimate>
class FFT1D
{
private:
int size_;
shared_ptr<double> in_;
shared_ptr<fftw_complex> out_;
fftw_plan fftPlan_;
public:
FFT1D(int size)
{
size_ = size;
out_.reset(static_cast<fftw_complex*>(fftw_malloc(sizeof(fftw_complex)*size_)), [](fftw_complex* p){ fftw_free(p); });
in_.reset(new double[size], default_delete<double[]>());
fftPlan_ = Select1D<IsEstimate>::fft(size_, in_.get(), out_.get());
}
~FFT1D()
{
fftw_destroy_plan(fftPlan_);
}
void FeedData(const shared_ptr<double> in)
{
memcpy(in_.get(), in.get(), size_ * sizeof(double));
}
void FeedData(const double* in)
{
memcpy(in_.get(), in, size_ * sizeof(double));
}
void Execute()
{
fftw_execute(fftPlan_);
}
void GetResult(shared_ptr<fftw_complex> out)
{
memcpy(out.get(), out_.get(), size_ * sizeof(fftw_complex));
}
//实部虚部
void GetResultRC(shared_ptr<double> out1, shared_ptr<double> out2)
{
//#pragma omp parallel for
for (int i = 0; i < size_; i++)
{
out1.get()[i] = out_.get()[i][0] / size_;
out2.get()[i] = out_.get()[i][1] / size_;
}
}
//模、辐角
void GetResultAT(shared_ptr<double> out1, shared_ptr<double> out2)
{
//模和幅值
//#pragma omp parallel for
for (int i = 0; i < size_; i++)
{
out1.get()[i] = (out_.get()[i][0] * out_.get()[i][0] + out_.get()[i][1] * out_.get()[i][1]) / size_;
if (out_.get()[i][0] != 0)
out2.get()[i] = atan(out_.get()[i][1] / out_.get()[i][0]);
else
out2.get()[i] = M_PI / 2 * (out_.get()[i][1]>0 ? 1 : -1);
}
}
//模、辐角
void GetResultA(shared_ptr<double> out1)
{
//模和幅值
//#pragma omp parallel for
for (int i = 0; i < size_; i++)
{
out1.get()[i] = (out_.get()[i][0] * out_.get()[i][0] + out_.get()[i][1] * out_.get()[i][1]) / size_;
}
}
//A=[1,2,3,4,5]; B=fftshift(A)=[4,5,1,2,3]; C=ifftshift(A)=[3,4,5,1,2];
void FFTShift(shift_flag flag)
{
if (flag == shift_flag::In)
{
//向负方向舍入
int size_floor2 = floor(size_ / 2);
//向正方向舍入
int size_ceil2 = ceil(size_ / 2);
unique_ptr<double[]> mid(new double[size_ceil2]);
//取出正频率数据
memmove(mid, in_.get(), size_ceil2 * sizeof(double));
//将负频率移动到前面
memmove(in_.get(), in_.get() + size_ceil2, size_floor2 * sizeof(double));
//正频率放到后面
memmove(in_.get() + size_floor2, mid.get(), size_ceil2 * sizeof(double));
}
else
{
//向负方向舍入
int size_floor2 = floor(size_ / 2);
//向正方向舍入
int size_ceil2 = ceil(size_ / 2);
unique_ptr<fftw_complex[]> mid(new fftw_complex[size_ceil2]);
//取出正频率数据
memmove(mid, out_.get(), size_ceil2 * sizeof(fftw_complex));
//将负频率移动到前面
memmove(out_.get(), out_.get() + size_ceil2, size_floor2 * sizeof(fftw_complex));
//正频率放到后面
memmove(out_.get() + size_floor2, mid.get(), size_ceil2 * sizeof(fftw_complex));
}
}
//A=[1,2,3,4,5]; B=fftshift(A)=[4,5,1,2,3]; C=ifftshift(A)=[3,4,5,1,2];
void iFFTShift(shift_flag flag)
{
if (flag == shift_flag::In)
{
//向负方向舍入
int size_floor2 = floor(size_ / 2);
//向正方向舍入
int size_ceil2 = ceil(size_ / 2);
unique_ptr<double[]> mid(new double[size_floor2]);
//取出正频率数据
memmove(mid, in_.get(), size_floor2 * sizeof(double));
//将负频率移动到前面
memmove(in_.get(), in_.get() + size_floor2, size_ceil2 * sizeof(double));
//正频率放到后面
memmove(in_.get() + size_ceil2, mid.get(), size_floor2 * sizeof(double));
}
else
{
//向负方向舍入
int size_floor2 = floor(size_ / 2);
//向正方向舍入
int size_ceil2 = ceil(size_ / 2);
unique_ptr<fftw_complex[]> mid(new fftw_complex[size_floor2]);
//取出正频率数据
memmove(mid, out_.get(), size_floor2 * sizeof(fftw_complex));
//将负频率移动到前面
memmove(out_.get(), out_.get() + size_floor2, size_ceil2 * sizeof(fftw_complex));
//正频率放到后面
memmove(out_.get() + size_ceil2, mid.get(), size_floor2 * sizeof(fftw_complex));
}
}
};
//fftw_plan fftw_plan_dft_r2c_1d(int n, double *in, fftw_complex *out, unsigned flags);
//flags: FFTW_ESTIMATE 单次执行速度快 FFTW_MEASURE 对同样大小的数据多次执行速度快
template<bool flag>
struct iSelect1D
{
static fftw_plan fft(int n, fftw_complex *in, fftw_complex *out)
{
return fftw_plan_dft_1d(n, in, out, FFTW_BACKWARD, FFTW_ESTIMATE);
}
};
template<>
struct iSelect1D<false>
{
static fftw_plan fft(int n, fftw_complex *in, fftw_complex *out)
{
return fftw_plan_dft_1d(n, in, out, FFTW_BACKWARD, FFTW_MEASURE);
}
};
template<bool IsEstimate>
class iFFT1D
{
private:
int size_;
shared_ptr<fftw_complex> in_;
shared_ptr<fftw_complex> out_;
fftw_plan fftPlan_;
public:
iFFT1D(int size)
{
size_ = size;
out_.reset(static_cast<fftw_complex*>(fftw_malloc(sizeof(fftw_complex)*size_)), [](fftw_complex* p){ fftw_free(p); });
in_.reset(static_cast<fftw_complex*>(fftw_malloc(sizeof(fftw_complex)*size_)), [](fftw_complex* p){ fftw_free(p); });
fftPlan_ = iSelect1D<IsEstimate>::fft(size_, in_.get(), out_.get());
}
~iFFT1D()
{
fftw_destroy_plan(fftPlan_);
}
void FeedData(const shared_ptr<double> in_r, const shared_ptr<double> in_c)
{
//#pragma omp parallel for
for (int i = 0; i < size_; i++)
{
in_.get()[i][0] = in_r.get()[i];
in_.get()[i][1] = in_c.get()[i];
}
}
void Execute()
{
fftw_execute(fftPlan_);
}
void GetResult(shared_ptr<fftw_complex> out)
{
memcpy(out.get(), out_.get(), size_ * sizeof(fftw_complex));
}
//实部虚部
void GetResultRC(shared_ptr<double> out1, shared_ptr<double> out2)
{
//#pragma omp parallel for
for (int i = 0; i < size_; i++)
{
out1.get()[i] = out_.get()[i][0] / sqrt(size_);
out2.get()[i] = out_.get()[i][1] / sqrt(size_);
}
}
//模、辐角
void GetResultAT(shared_ptr<double> out1, shared_ptr<double> out2)
{
//模和幅值
//#pragma omp parallel for
for (int i = 0; i < size_; i++)
{
out1.get()[i] = (out_.get()[i][0] * out_.get()[i][0] + out_.get()[i][1] * out_.get()[i][1]) / sqrt(size_);
if (out_.get()[i][0] != 0)
out2.get()[i] = atan(out_.get()[i][1] / out_.get()[i][0]);
else
out2.get()[i] = M_PI / 2 * (out_.get()[i][1]>0 ? 1 : -1);
}
}
//模、辐角
void GetResultA(shared_ptr<double> out1)
{
//模和幅值
//#pragma omp parallel for
for (int i = 0; i < size_; i++)
{
out1.get()[i] = (out_.get()[i][0] * out_.get()[i][0] + out_.get()[i][1] * out_.get()[i][1]) / sqrt(size_);
}
}
//A=[1,2,3,4,5]; B=fftshift(A)=[4,5,1,2,3]; C=ifftshift(A)=[3,4,5,1,2];
void FFTShift(shift_flag flag)
{
if (flag == shift_flag::In)
{
//向负方向舍入
int size_floor2 = floor(size_ / 2);
//向正方向舍入
int size_ceil2 = ceil(size_ / 2);
shared_ptr<fftw_complex> mid(static_cast<fftw_complex*>(fftw_malloc(sizeof(fftw_complex)* size_ceil2)), [](fftw_complex* p){ fftw_free(p); });
//取出正频率数据
memmove(mid.get(), in_.get(), size_ceil2 * sizeof(fftw_complex));
//将负频率移动到前面
memmove(in_.get(), in_.get() + size_ceil2, size_floor2 * sizeof(fftw_complex));
//正频率放到后面
memmove(in_.get() + size_floor2, mid.get(), size_ceil2 * sizeof(fftw_complex));
}
else
{
//向负方向舍入
int size_floor2 = floor(size_ / 2);
//向正方向舍入
int size_ceil2 = ceil(size_ / 2);
shared_ptr<fftw_complex> mid(static_cast<fftw_complex*>(fftw_malloc(sizeof(fftw_complex)* size_ceil2)), [](fftw_complex* p){ fftw_free(p); });
//取出正频率数据
memmove(mid.get(), out_.get(), size_ceil2 * sizeof(fftw_complex));
//将负频率移动到前面
memmove(out_.get(), out_.get() + size_ceil2, size_floor2 * sizeof(fftw_complex));
//正频率放到后面
memmove(out_.get() + size_floor2, mid.get(), size_ceil2 * sizeof(fftw_complex));
}
}
//A=[1,2,3,4,5]; B=fftshift(A)=[4,5,1,2,3]; C=ifftshift(A)=[3,4,5,1,2];
void iFFTShift(shift_flag flag)
{
if (flag == shift_flag::In)
{
//向负方向舍入
int size_floor2 = floor(size_ / 2);
//向正方向舍入
int size_ceil2 = ceil(size_ / 2);
shared_ptr<fftw_complex> mid(static_cast<fftw_complex*>(fftw_malloc(sizeof(fftw_complex)* size_floor2)), [](fftw_complex* p){ fftw_free(p); });
//取出正频率数据
memmove(mid.get(), in_.get(), size_floor2 * sizeof(fftw_complex));
//将负频率移动到前面
memmove(in_.get(), in_.get() + size_floor2, size_ceil2 * sizeof(fftw_complex));
//正频率放到后面
memmove(in_.get() + size_ceil2, mid.get(), size_floor2 * sizeof(fftw_complex));
}
else
{
//向负方向舍入
int size_floor2 = floor(size_ / 2);
//向正方向舍入
int size_ceil2 = ceil(size_ / 2);
shared_ptr<fftw_complex> mid(static_cast<fftw_complex*>(fftw_malloc(sizeof(fftw_complex)* size_floor2)), [](fftw_complex* p){ fftw_free(p); });
//取出正频率数据
memmove(mid.get(), out_.get(), size_floor2 * sizeof(fftw_complex));
//将负频率移动到前面
memmove(out_.get(), out_.get() + size_floor2, size_ceil2 * sizeof(fftw_complex));
//正频率放到后面
memmove(out_.get() + size_ceil2, mid.get(), size_floor2 * sizeof(fftw_complex));
}
}
};
}
#endif