-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfft2.h
342 lines (306 loc) · 11.3 KB
/
fft2.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
//fft.h
#ifndef NK_FFT2
#define NK_FFT2
#include <iostream>
#include <memory>
#include <algorithm>
#include <vector>
#include <math.h>
#include "fft.h"
#include "fftw32/include/fftw3.h"
#define _USE_MATH_DEFINES
#pragma comment(lib, "libfftw3f-3.lib")
#pragma comment(lib, "libfftw3-3.lib")
#pragma comment(lib, "libfftw3l-3.lib")
namespace MyAlg
{
using std::shared_ptr;
using std::unique_ptr;
//fftw_plan fftw_plan_dft_r2c_1d(int n, double *in, fftw_complex *out, unsigned flags);
//flags: FFTW_ESTIMATE 单次执行速度快 FFTW_MEASURE 对同样大小的数据多次执行速度快
template<bool flag>
struct Select2D
{
static fftw_plan fft(int n0, int n1, fftw_complex *in, fftw_complex *out)
{
return fftw_plan_dft_2d(n0, n1, in, out, FFTW_FORWARD, FFTW_ESTIMATE);
}
};
template<>
struct Select2D<false>
{
static fftw_plan fft(int n0, int n1, fftw_complex *in, fftw_complex *out)
{
return fftw_plan_dft_2d(n0, n1, in, out, FFTW_FORWARD, FFTW_MEASURE);
}
};
template<bool IsEstimate>
class FFT2D
{
private:
int size1_;
int size2_;
shared_ptr<fftw_complex> in_;
shared_ptr<fftw_complex> out_;
fftw_plan fftPlan_;
public:
FFT2D(int size1, int size2)
{
/*fftw_complex *in, *out;
double *in2;
in = (fftw_complex*)fftw_malloc(sizeof(fftw_complex)* 4 * 6);
in2 = (double*)fftw_malloc(sizeof(double)* 4 * 6);
out = (fftw_complex*)fftw_malloc(sizeof(fftw_complex)* 4 * 6);
string temp;
temp = "in= \n";
OutputDebugString(temp.c_str());
int a[] = { 1, 2, 3, 9, 3, 5, 2, 3, 4, 10, 68, 7, 3, 4, 5, 34, 56, 3, 4, 5, 6, 19, 478, 4, 4, 5, 6, 19, 478, 4, 4, 5, 6, 19, 478, 4 };
for (int i = 0; i<4; i++)
{
for (int j = 0; j<6; j++)
{
*(*(in + i * 6 + j) + 0) = a[i*6 + j];
*(*(in + i * 6 + j) + 1) = 0;
*(in2 + i * 6 + j) = a[i * 6 + j];
//cout << *(*(in + i * 3 + j) + 0) << "+" << *(*(in + i * 3 + j) + 1) << "i, ";
temp = to_string(static_cast<double>(*(*(in + i * 6 + j) + 0))) + "+" + to_string(static_cast<double>(*(*(in + i * 6 + j) + 1))) + "i, ";
OutputDebugString(temp.c_str());
}
OutputDebugString("\n");
}
fftw_plan p;
p = fftw_plan_dft_2d(4, 6, in, out, FFTW_FORWARD, FFTW_ESTIMATE);
//p = fftw_plan_dft_r2c_2d(6, 6, in2, out, FFTW_ESTIMATE);
fftw_execute(p);
temp = "out= ";
OutputDebugString(temp.c_str());
double tt = sqrt(4 * 6);
for (int i = 0; i<4; i++)
{
for (int j = 0; j<6; j++)
{
temp = to_string(static_cast<double>(*(*(out + i * 6 + j) + 0)) / tt)+"\t";// +"+" + to_string(static_cast<double>(*(*(out + i * 3 + j) + 1)) / tt) + "i, ";
OutputDebugString(temp.c_str());
}
OutputDebugString("\n");
}
fftw_destroy_plan(p);
fftw_free(in);
fftw_free(out);*/
size1_ = size1;
size2_ = size2;
out_.reset(static_cast<fftw_complex*>(fftw_malloc(sizeof(fftw_complex) * size1_ * size2_)), [](fftw_complex* p){ fftw_free(p); });
in_.reset(new fftw_complex[size1_ * size2_], default_delete<fftw_complex[]>());
fftPlan_ = Select2D<IsEstimate>::fft(size1_, size2_, in_.get(), out_.get());
}
~FFT2D()
{
fftw_destroy_plan(fftPlan_);
}
void FeedData(const shared_ptr<double> in)
{
//memcpy(in_.get(), in.get(), size1_ * size2_ * sizeof(double));
//#pragma omp parallel for
for (int i = 0; i < size1_*size2_; i++)
{
in_.get()[i][0] = in.get()[i];
in_.get()[i][1] = 0;
}
}
void Execute()
{
fftw_execute(fftPlan_);
}
void GetInput(Mat & in)
{
for (int i = 0; i < size1_; i++)
{
for (int j = 0; j < size2_; j++)
{
double* mid = in_.get()[i * size2_ + j];
in.at<char>(i, j) = static_cast<int>(mid[0]);
}
}
}
void GetResult(shared_ptr<fftw_complex> out)
{
memcpy(out.get(), out_.get(), size1_ * size2_ * sizeof(fftw_complex));
}
//实部虚部
void GetResultRC(Mat& out1, Mat& out2)
{
//#pragma omp parallel for
for (int i = 0; i < size1_; i++)
{
for (int j = 0; j < size2_; j++)
{
double* mid = out_.get()[i * size2_ + j];
out1.at<double>(i, j) = mid[0] / sqrt(size1_*size2_);
out2.at<double>(i, j) = mid[1] / sqrt(size1_*size2_);
}
}
}
//实部虚部
void GetResultR(Mat& out1)
{
for (int i = 0; i < size1_; i++)
{
for (int j = 0; j < size2_; j++)
{
double* mid = out_.get()[i * size2_ + j];
out1.at<double>(i, j) = mid[0] / sqrt(size1_*size2_);
}
}
}
//实部虚部
void GetResultRC(shared_ptr<double> out1, shared_ptr<double> out2)
{
//#pragma omp parallel for
for (int i = 0; i < size1_; i++)
{
for (int j = 0; j < size2_; j++)
{
out1.get()[i * size2_ + j] = out_.get()[i * size2_ + j][0] / sqrt(size1_*size2_);
out2.get()[i * size2_ + j] = out_.get()[i * size2_ + j][1] / sqrt(size1_*size2_);
}
}
}
//模、辐角
void GetResultAT(shared_ptr<double> out1, shared_ptr<double> out2)
{
//模和幅值
for (int i = 0; i < size1_; i++)
{
for (int j = 0; j < size2_; j++)
{
out1.get()[i * size2_ + j] = sqrt(
(out_.get()[i * size2_ + j][0] * out_.get()[i * size2_ + j][0] + out_.get()[i * size2_ + j][1] * out_.get()[i * size2_ + j][1]) / (size1_*size2_)
);
if (out_.get()[i * size2_ + j][0] != 0)
out2.get()[i * size2_ + j] = atan(out_.get()[i * size2_ + j][1] / out_.get()[i * size2_ + j][0]);
else
out2.get()[i * size2_ + j] = M_PI / 2 * (out_.get()[i * size2_ + j][1]>0 ? 1 : -1);
}
}
}
//模、辐角
void GetResultA(shared_ptr<double> out1)
{
//模和幅值
for (int i = 0; i < size1_; i++)
{
for (int j = 0; j < size2_; j++)
{
out1.get()[i * size2_ + j] = sqrt(
(out_.get()[i * size2_ + j][0] * out_.get()[i * size2_ + j][0] + out_.get()[i * size2_ + j][1] * out_.get()[i * size2_ + j][1]) / (size1_*size2_)
);
}
}
}
//A=[1,2,3,4,5]; B=fftshift(A)=[4,5,1,2,3]; C=ifftshift(A)=[3,4,5,1,2];
void FFTShift2D(shift_flag flag)
{
//向负方向舍入
int size_floor2 = floor(size2_ / 2.0);
//向正方向舍入
int size_ceil2 = ceil(size2_ / 2.0);
//向负方向舍入
int size_floor1 = floor(size1_ / 2.0);
//向正方向舍入
int size_ceil1 = ceil(size1_ / 2.0);
if (flag == shift_flag::In)
{
shared_ptr<fftw_complex> mid(static_cast<fftw_complex*>(fftw_malloc(sizeof(fftw_complex)* size_ceil2)), [](fftw_complex* p){ fftw_free(p); });
for (int i = 0; i < size1_; i++)
{
//取出正频率数据
memmove(mid.get(), in_.get() + i * size2_, size_ceil2 * sizeof(fftw_complex));
//将负频率移动到前面
memmove(in_.get() + i * size2_, in_.get() + i * size2_ + size_ceil2, size_floor2 * sizeof(fftw_complex));
//正频率放到后面
memmove(in_.get() + i * size2_ + size_floor2, mid.get(), size_ceil2 * sizeof(fftw_complex));
}
shared_ptr<fftw_complex> mid2(static_cast<fftw_complex*>(fftw_malloc(sizeof(fftw_complex)* size_ceil1 * size2_)), [](fftw_complex* p){ fftw_free(p); });
//取出正频率数据
memmove(mid2.get(), in_.get(), size_ceil1 * size2_ * sizeof(fftw_complex));
//将负频率移动到前面
memmove(in_.get(), in_.get() + size_ceil1 * size2_, size_floor1 * size2_ * sizeof(fftw_complex));
//正频率放到后面
memmove(in_.get() + size_floor1 * size2_, mid2.get(), size_ceil1 * size2_ * sizeof(fftw_complex));
}
else
{
shared_ptr<fftw_complex> mid(static_cast<fftw_complex*>(fftw_malloc(sizeof(fftw_complex)* size_ceil2)), [](fftw_complex* p){ fftw_free(p); });
for (int i = 0; i < size1_; i++)
{
//取出正频率数据
memmove(mid.get(), out_.get() + i * size2_, size_ceil2 * sizeof(fftw_complex));
//将负频率移动到前面
memmove(out_.get() + i * size2_, out_.get() + i * size2_ + size_ceil2, size_floor2 * sizeof(fftw_complex));
//正频率放到后面
memmove(out_.get() + i * size2_ + size_floor2, mid.get(), size_ceil2 * sizeof(fftw_complex));
}
shared_ptr<fftw_complex> mid2(static_cast<fftw_complex*>(fftw_malloc(sizeof(fftw_complex)* size_ceil1 * size2_)), [](fftw_complex* p){ fftw_free(p); });
//取出正频率数据
memmove(mid2.get(), out_.get(), size_ceil1 * size2_ * sizeof(fftw_complex));
//将负频率移动到前面
memmove(out_.get(), out_.get() + size_ceil1 * size2_, size_floor1 * size2_ * sizeof(fftw_complex));
//正频率放到后面
memmove(out_.get() + size_floor1 * size2_, mid2.get(), size_ceil1 * size2_ * sizeof(fftw_complex));
}
}
//A=[1,2,3,4,5]; B=fftshift(A)=[4,5,1,2,3]; C=ifftshift(A)=[3,4,5,1,2];
void iFFTShift2D(shift_flag flag)
{
//向负方向舍入
int size_floor2 = floor(size2_ / 2.0);
//向正方向舍入
int size_ceil2 = ceil(size2_ / 2.0);
//向负方向舍入
int size_floor1 = floor(size1_ / 2.0);
//向正方向舍入
int size_ceil1 = ceil(size1_ / 2.0);
if (flag == shift_flag::In)
{
shared_ptr<fftw_complex> mid(static_cast<fftw_complex*>(fftw_malloc(sizeof(fftw_complex)* size_floor2)), [](fftw_complex* p){ fftw_free(p); });
for (int i = 0; i < size1_; i++)
{
//取出正频率数据
memmove(mid.get(), in_.get() + i * size2_, size_floor2 * sizeof(fftw_complex));
//将负频率移动到前面
memmove(in_.get() + i * size2_, in_.get() + i * size2_ + size_floor2, size_ceil2 * sizeof(fftw_complex));
//正频率放到后面
memmove(in_.get() + i * size2_ + size_ceil2, mid.get(), size_floor2 * sizeof(fftw_complex));
}
shared_ptr<fftw_complex> mid2(static_cast<fftw_complex*>(fftw_malloc(sizeof(fftw_complex)* size_floor1 * size2_)), [](fftw_complex* p){ fftw_free(p); });
//取出正频率数据
memmove(mid2.get(), in_.get(), size_floor1 * size2_ * sizeof(fftw_complex));
//将负频率移动到前面
memmove(in_.get(), in_.get() + size_floor1 * size2_, size_ceil1 * size2_ * sizeof(fftw_complex));
//正频率放到后面
memmove(in_.get() + size_ceil1 * size2_, mid2.get(), size_floor1 * size2_ * sizeof(fftw_complex));
}
else
{
shared_ptr<fftw_complex> mid(static_cast<fftw_complex*>(fftw_malloc(sizeof(fftw_complex)* size_floor2)), [](fftw_complex* p){ fftw_free(p); });
for (int i = 0; i < size1_; i++)
{
//取出正频率数据
memmove(mid.get(), out_.get() + i * size2_, size_floor2 * sizeof(fftw_complex));
//将负频率移动到前面
memmove(out_.get() + i * size2_, out_.get() + i * size2_ + size_floor2, size_ceil2 * sizeof(fftw_complex));
//正频率放到后面
memmove(out_.get() + i * size2_ + size_ceil2, mid.get(), size_floor2 * sizeof(fftw_complex));
}
shared_ptr<fftw_complex> mid2(static_cast<fftw_complex*>(fftw_malloc(sizeof(fftw_complex)* size_floor1 * size2_)), [](fftw_complex* p){ fftw_free(p); });
//取出正频率数据
memmove(mid2.get(), out_.get(), size_floor1 * size2_ * sizeof(fftw_complex));
//将负频率移动到前面
memmove(out_.get(), out_.get() + size_floor1 * size2_, size_ceil1 * size2_ * sizeof(fftw_complex));
//正频率放到后面
memmove(out_.get() + size_ceil1 * size2_, mid2.get(), size_floor1 * size2_ * sizeof(fftw_complex));
}
}
};
}
#endif