-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcandidacy-exam.nb
10806 lines (10689 loc) · 582 KB
/
candidacy-exam.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 595638, 10797]
NotebookOptionsPosition[ 591480, 10654]
NotebookOutlinePosition[ 591867, 10671]
CellTagsIndexPosition[ 591824, 10668]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[{
RowBox[{
RowBox[{"imgsize", "=", "800"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"SetDirectory", "@",
RowBox[{"NotebookDirectory", "[", "]"}]}], ";"}]}], "Input"],
Cell[CellGroupData[{
Cell["Tools", "Subchapter",
CellChangeTimes->{{3.669759769534265*^9, 3.669759771205373*^9}}],
Cell["Unit converter", "Text",
CellChangeTimes->{{3.669759773045267*^9, 3.669759777837077*^9}}],
Cell["Convert eV^(-1) to km", "Text",
CellChangeTimes->{{3.669759779926193*^9, 3.669759787292981*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"eVInvert2km", "[", "eVInvert_", "]"}], ":=",
RowBox[{"eVInvert", "*", "1.97", "*",
RowBox[{"10", "^",
RowBox[{"(",
RowBox[{"-", "10"}], ")"}]}]}]}], ";"}]], "Input",
CellChangeTimes->{{3.6697597890280313`*^9, 3.6697598244026203`*^9},
3.669759858403565*^9, {3.669759964283328*^9, 3.669759965354514*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"km2eVInvert", "[", "km_", "]"}], ":=",
RowBox[{"km", "/",
RowBox[{"(",
RowBox[{"1.97", "*",
RowBox[{"10", "^",
RowBox[{"(",
RowBox[{"-", "10"}], ")"}]}]}], ")"}]}]}], ";"}]], "Input",
CellChangeTimes->{{3.6697598437358427`*^9, 3.66975987513846*^9}, {
3.6697599703279133`*^9, 3.669759973705505*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell["Resonance Width", "Subchapter",
CellChangeTimes->{{3.6693970639633303`*^9, 3.66939706651444*^9}}],
Cell["\<\
In the explaination using the approximation of Bessel functions, I mentioned \
\[Alpha] should be large (perturbation amplitude A should be small). Then how \
large is large? (How small is small?)\
\>", "Text",
CellChangeTimes->{{3.669397069449697*^9, 3.669397122840782*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Reduce", "[",
RowBox[{
RowBox[{
RowBox[{"Sech", "[", "x", "]"}], "\[Equal]", "amp"}], ",", "x"}],
"]"}]], "Input"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"C", "[", "1", "]"}], "\[Element]", "Integers"}], "&&",
RowBox[{"amp", "\[NotEqual]", "0"}], "&&",
RowBox[{"(",
RowBox[{
RowBox[{"x", "\[Equal]",
RowBox[{
RowBox[{"-",
RowBox[{"ArcCosh", "[",
FractionBox["1", "amp"], "]"}]}], "+",
RowBox[{"2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ",
RowBox[{"C", "[", "1", "]"}]}]}]}], "||",
RowBox[{"x", "\[Equal]",
RowBox[{
RowBox[{"ArcCosh", "[",
FractionBox["1", "amp"], "]"}], "+",
RowBox[{"2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ",
RowBox[{"C", "[", "1", "]"}]}]}]}]}], ")"}]}]], "Output",
CellChangeTimes->{3.669397029743246*^9}]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"alpha", "[", "amp_", "]"}], ":=",
RowBox[{"ArcCosh", "[",
RowBox[{"1", "/", "amp"}], "]"}]}]], "Input",
CellChangeTimes->{{3.669396849385474*^9, 3.669396904539692*^9}, {
3.6693969598003063`*^9, 3.669396992197727*^9}, {3.669397037559699*^9,
3.669397046565044*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"alpha", "[", "0.1", "]"}]], "Input",
CellChangeTimes->{{3.669396977502883*^9, 3.669396980366304*^9}}],
Cell[BoxData["2.993222846126381`"], "Output",
CellChangeTimes->{{3.66939698102284*^9, 3.6693969941754923`*^9},
3.66939704794042*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Series", "[",
RowBox[{
RowBox[{"Tanh", "[", "x", "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "5"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.669397337302126*^9, 3.6693973576856327`*^9}}],
Cell[BoxData[
InterpretationBox[
RowBox[{"x", "-",
FractionBox[
SuperscriptBox["x", "3"], "3"], "+",
FractionBox[
RowBox[{"2", " ",
SuperscriptBox["x", "5"]}], "15"], "+",
InterpretationBox[
SuperscriptBox[
RowBox[{"O", "[", "x", "]"}], "6"],
SeriesData[$CellContext`x, 0, {}, 1, 6, 1],
Editable->False]}],
SeriesData[$CellContext`x, 0, {1, 0,
Rational[-1, 3], 0,
Rational[2, 15]}, 1, 6, 1],
Editable->False]], "Output",
CellChangeTimes->{{3.669397348523855*^9, 3.669397357909946*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"Tanh", "[", "x", "]"}], "-", "x"}], "/.",
RowBox[{"{",
RowBox[{"x", "\[Rule]"}], "}"}]}]], "Input",
CellChangeTimes->{{3.669397312374434*^9, 3.669397326695744*^9}}],
Cell[BoxData["0"], "Output",
CellChangeTimes->{{3.669397319460144*^9, 3.669397321944852*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"Tanh", "[", "x", "]"}], "-", "x"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "1"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.669397222481668*^9, 3.669397298277975*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwd1Ak0VV0bB/AjFVFSIUqmjBUplCRblCLzXC+6UoZISELkKlTInCh5yVCv
zCky7OcaQuKGEgkRmZKropTp231nrbPO+q3nf5699l7POeKnzpueWUZR1G9y
/33qnRltY4xZaFD/v3grRvItT30UUkYEYknSWVUC3B1RT4QO/XX6GumOquf4
itslaUNi+snpzm9VCvv4su4LmROLvWuQWoGpDWPxS6LHiWN2dmbz4baJqqv2
0nbEN440d4pjE4eXZfaJ9sQe5d4WO7Baq1JhnNBpYmPGAykVvPVA6sPaFMe/
/YLWCmvg1Tmc/06LuhCfPl6WfQhPC1xIlMpwJZbccS/gGO691nvLUtqd2HBD
SacJdpjNqKk19yBWjXctsMSdCsc1bBI9iTXnjCxssP4ZnvLpTi9i0/hUN3vM
uFerckvIm7jb67rUGazc7lsk9c9F4pArxrYu+D9OBXmc4kNsGTey2R2LoMFH
ln2X/uYP3i/xxHEXkyRZon7El2PuZXvjlbkGadft/f++n/R55BL2/7RMWCzj
8t/z2ucVcBlPCpbdKRsKIO43VHUOwg5G5zaYSF9BFH3I6k5nMO4KlYgecwr6
ez4bs7eFYOk+1xXV5nTi1S3aBWGY5qejfWvmrzV7XZ1u4rt84sHHE4OJuXOE
LCLx24I5LLX3KnF93FH/aMxz7N38t05iOscfP7dYfC04wjdcKIR4f42l1G2M
hR2fWZYTU+I73yvewbOlmtMS/4QS913ltU3GbpMz5ytSwoi3+iZsTsXZN1vz
rh+4Trxm16RVGu6XfPzFrI+Y0THgVJKOzf+hOU2I3kSUpu9Tq+xMHPVTLauM
QcwwuPhKPRs3xvIPhtiHk/U/bIsZeYgPNDbZbcmIIP00sjkCHmNfh6yUMe1I
8j43W5ljHi5eDOp+OkRM975c4lSApVVULA2loxAlFuOj01mEaa1rEzY1EDOO
qD75U4zvuY63DTtFk37Tt7W3lWDOttfZYB5D3JXTnP8MZ4lUvZDKIta02Xpo
eRnWcssZipghZjiX9zg+xwEcoRLWibEknwPu5pVYyMLrIB4mpi+ODX+sws8e
nKRJ7o0j+fWPA/0ATx1QS53qJKbx7VrmVo1Pe7OEbgolkLrS0WLJF1iJPc6/
2IM4zavHRb0eL4tT/vChgbg/LOSubQP+t8AvRcHnNsl3+XBWvcTuGsILVi3E
dPYLiXNNWL0F2wZLJpL+74c1DjXj7nF20bftxAwqnj7NxI/8soMW5O4gyuOo
uopCK77EqdsvHUxMkxC8MdKK+aSj0v12JpH9jCgnnW3HRvaCkqKRyST/8nZi
SQcWmSoPOTpITDvhWHD7HZ64YvvZU+0uomKQa0NAJw5PeZBdN0pcqFF02PY9
ruvcIXf2cArJP/AucOnF8Y6vb8anEGsyFX8G9OFTM57jlT+IPawsexM/4qX1
pY/XPriPqNmLZe6sfqxmeFDh6WIqoozZXSdog5izdzCqz+JfRDW+c96+cgh3
uoaxOPKICxPluAuGcHndGes8+TRE8fLv7eAextafcoSoHmLFu/p530cxyM2/
TOBIJ+u/kV/9bAxLexr4yyml/51/U5vAcTyzxOo2DSduZcuc3TiB47aopGSp
PiAenVO7wsJ/Tofpq50mLjRoEtk1he1zO+eZ0cRl979pZk1hxf3+trPDxFMO
X+biv+EWaxA5djsDUZwm6u8jfmDOBN30qW+ZZL3Yc4ljv/Cc6sBc+qYsRHUx
VGcuzuLJXl9LM21i6nGr9/Lf+I3MI+5nCcSzWlXDMn9wasVKn8t7s4n9Bzhu
zmPlwVq9lYEPyX5FekY/UCBz45+s0ixi38GUDcpssEn+x5Izk/ht0dnzt9hg
yUfi6SvRR+T8uC1qtJdBE1ewaGwNcUKVDw+wA223xvRmzhxEme/R4/y+Esw6
OwxbFIl3vDmpascBOgHn/rtynFiyQaj8FQdsr0+xG8gh9tBJLc/hhJ/H5xqz
DR6TeezpG/Xlgsjgsvu74nPJ/JXmV1vxQJC08eynCuKQal6qmwe8Xo2YJgwR
D3neL7RdC1b8Gzl/qeQhapK1rUyZFyT+u+hV2UUsoRVporsOSlt3HzkiUoCo
SFs5ZuIGiBqbOLpDh9g6asnr0wZwXPZQb507sRuH4XsFPhBQ3mz4oYo4RVBq
8iUfVLwKzilVKCTzFOdltkoANu88W3SMSTx7TOJTniCE7T+yW+MTsbIvi3el
EHw/IvlE8SdxV85F3pNC0ETrK+EXKSL/kz+XQzdsAv8407KP54gPDfOfCtsM
3TNqcGFNMaJKjMPLE0RAZ5mgpqM48XTDWqc/IlDMM8OwViH2/hbygyYK4TIF
NQdsif/orrAWFAO141vrOfKIjcW5Xb6KQXIld8s9/SeIyt9neiRPAqyv9XTX
RpSQ82P5Hb4uDbz90juc0olln2qnMqXhpbpnIFcpcU9qXqSADKj9XCFm8onY
8WHTjkcysNll55k+1afE8isi2mWhz/Aqa/YzscRTdZ1D2+H0JtnlCpqlZF6V
Z2aMFEH4kpdFmwXxyD9nYwMVoeNNZba3K7G7vl7wY0XQuWWiW5FIrJsTcJJz
F8hQl6OOfiU+rLlKpH4XjH9uEXS4W4aozq3pwyZKcL7ognzS9HNEXTlcU5G7
BybVB9685CxH1C+Jg7kDe8Ct0dB/Tpj4uEj0pMBecP4o12B3mPiLerTL1b1A
W9NPk0okluvuQ7aqYOyin1C8twJRowczMyTUQFFcaq7ZvxJRq98r/fx6APJz
49IXo4jLSt/ekdeAHarUUcUMYhOtH3HnNEDW6ENC/CviF2tTEyc1QCwwVuGE
cBX5/kJPdE8jWPd+wX6kirh0tcehVQfhe8y7RjY2QNRMl62AnjZUuhWhIQFA
9EQp3kEvbbh+NPJZ/Q5iWalXo/e0QZjSyoywJnnrqzP/TmrD4fN5QfyFxOMD
ptWJh6BZWutewk4GmZf6vm/fDoPYCiHTR33EKHpJoOMorLgQdit5jFixS8to
hS6M9/9oDJ8mbk0+8UJFF55WMtE5rmpEnRFKc72jC3reIfK79xC/087PtNUD
70EWZ+Ut4pjTUuMzx6Cxuh5eq9eQ+ZPZ3WxpBNnN80O3jhDL9gSzRRlBaOdu
Ln1T4jqxOZ8XRqD1NdW80akG0V8HBcRuMoZKwUtjjDhSX/xyrTrCGArPy2wo
HiV1NjW9g94mkLTlhmNCQi2iVEP799uZgY8sjjD9txbRm3oi5gLNwEJpupA3
h3i93LXe+2awXpc2FwnEVVwpnH1mEOmtGhM6Tuzt47Bw0hzor0af+2jWIfpY
f7bHWQtw8dNdc3yiDlHLoyJmk60gZ/M6W7ufpD5/50BJhRVMVHXlOlAvEKW1
Ni+61wrclznru/MR12fNZ4lbg3dEWMQ19ReIvg1GTR5bQ9D92lX5kaRux6/1
pO443K4+sJJdvh5RJxb4FtfaQPWq3Uu55xqQZvh5tv5QGsiaK5aG+zYghmf3
lycpNIhJVTjvfI3UK/ZHpDyhAU1p+8etyQ2I2trGnTtAg0UbSbhbR/Latzlf
aNiDWqFA0I3NjYihuTt6eN4eSiznFh1eEn94dFPypgNkZ9QtbpJqQnSrNjH3
QUfwCDUfQDubEOWVjNsWHGG/01Dt6X2k/nxJR1fQCVq3Lb+Zb9CENKOElbwN
nOB3kfYGLR+Sf3FXtbzMCfQZNTIuDSQv9nhmdbwz/OhhGJe6vELUOsXJecuz
oClQ9cAsvxnRH3baBW9xB/mGnrL6ba9RfxP3Ro6DF+Ctptnkf5OtiB5uRfdJ
8gU3Ltf2DsV2RBcalyu1uwKvuqyqeKLeIDHTI3/wi6tgpmM9MDT0FvVz0VdF
NobBnrQIqzTJdyjt9mwafS4c+hfj3zoHdSL6b/vyaI4Y+Kz7OkOgtgspQsxm
/YdxUJj80a9NvBu1ulf/Zjbehqwb7Dfl/D+gqfwXgfdkk2HG4cS4Y0UPovet
vrL2dgpwHwozLdrYh8T0nBq2GKRBAO/n1QM2H9EsF4+ki9kDWI23U50G/Shp
gV3r0YVMOOBjtFD7px+N5mxUkP+SDSmZkRlbUwYQLaVsPunkf2Bnodyy6tgn
VJjUm9OklAtPO87E45+fkOZ0hWCDdAHsay5cNpw4iJyjMk11OIpA7LDjTPyh
IdQ6WmilXVgMKsoqsSXDQ2hK8dfIWZMS+Pj91suM0M+oawtP5I2FpzChZBIq
tHsYWYvwed8aLAXpL/LjbG+GUX/xk1XiVc+hTvJiu0fwCOLNFrS0e1sB0W87
HEwlR5Hstq2xiT1VwDJjxC6rG0VdXlcVM78CFFvwa+/zHEM2Lf5fTcWqIaPl
2v1P68cRVWv/sh3VwK8Gm8vra8aRbFuN6kJwLfTHwgyv+xfU/13v++fGOvjZ
tl/oKs8EmjgYqLmHvR48EiQYfpUTiP6Of2HjqQbY2CLBO2T3FY1WP1+/VNwI
Zh2588KLX9H0MdTev6IJvp9Md+vJmUTCrLDWFUGvAGgFoTz6LKQPI9qFI81Q
/trtWJ8hC/Ukn89eM9kMzzS2rcs3YaHlsVL5rtPNkCuclWJgxULN3z7nyrG1
wN2uu08iT7HQ6JSGY96mFrhoHDbA5UfyYfTKNwYtsF3T9gBHNgslxTon3Stp
AemCTeydj1iIdikwbE1FC0iIdDVmP2ahulAeQXp1CwjOm5rrFLGQTYC7lBOz
BVaWHXUNrWQhc4mHI+qjLTCwUzmZ/Q0LqR9hW1wpzISe1G92bzpYSHL9+S3X
JJjQtaZAMqOLhYSHAj8uyTKB+UWuUKuPhRiZR47NqTCh8qFoQ/AY6XeVi/Hb
iAllAr2RJhMslOC79N3fkglPQu+airNYiO+UTOO8DRNyHPj7GNMsFPKly3rZ
WSZktbdnxPxioRs/dfjCPJiQdjDGhfaHhaaaCj25LjEhpdBgp+IC2f89Ts/o
QCbcEeWeWVpiocI7muv5Q5jwPxlclZc=
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{"DefaultBoundaryStyle" -> Automatic, "ScalingFunctions" -> None},
PlotRange->{{0, 1}, {-0.23840583220697686`, 0.}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.6693972348964777`*^9,
3.6693972986503353`*^9}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztXAmYVNWVfnR1s8iiJqhJTCJRk5gxq8RlJqOZZGaSycxkkkxmX2JwqYAZ
S4NajtEyERsJtiitYqu0YyjRdqEVS2mWZqdYCiigWAqohgIKKGigaAqK7qIp
uDn/uedVPzp16xWYzDfzfenv6+rivfffc+655577n3Pv47sj7h15+50j7h11
64hh3x494u6Ro269Z9i37hpNlzx9LKvPSMuyNg+z8F3RV/ngn1H4kH+U+N6f
/3hUPpdT+QLfsc6Ta0oVVC6bo0+lMT/QmL78ZwB9ZFWozqe8Xi//Nscz/Fg8
SP8OxlWqpc6qxh1CNMWzKptoVX4868PzARVO5fj57zubHaraw/XK6w+pPP0z
n2qhR2tVknTI5zIqm8OXlKqnZvzBiOIGCgUoqpqp2YZIOzeZiTYSLkgK6p/v
aRHWIJVsodZ9fuX361+f16dCiZyKBf2EzsjzGdXo9atoTnkYSKoV0qopQHr7
m1Ra20kV8vkq21S5KLXEelr2NZhEfrT5/rqoRD6TVslkUqVSKf7F9wx1LR4M
OJTIqqAvACWqi8NSUNGmALXcqNrpe7gexqxXLa0tqh5GrQ9jsFiB6qL87zjN
25dk+JSPRkd3IU4j4lOxnAZZA1UhE1et4YTSfcyRHbyqkQYvGSK5tc0qEgmr
SDzNTuFx6aktMhsLss5pGtJ0mEbG14SRKYpMY5D9KpahRrNxVUvNhZJ5lYs3
sb1TmYxqT6dVOpOrUGQNXEeFGwPimwG1MGVj+/O9aHNd0W9rg2HtSLm4qvN5
q9hla1SgOa6cP7jKX/5Wi/q4iyq/t/vflBuFU6eKN2ocmB7IN+TJxWt3q4df
DKtMtkssZG79z/hrtdqfyanbH5ul7p+0UJ3oLrjBvi4wKPXLxrAa8WiL2rkv
268imEdNm79F/eiRGWrG0u0Sk8yYm0TUlp0ZdfOYGepXwRXq9OnTbrAbBZbr
6lZ3PzVPjXp8jjp8tGtARTCPeuatKGsY3bJfIqQZ86dyY9GaFGN+/f4G8vNS
I/Q1USp98Ji6jaz9wHOLYO2BLgL+RGAnC6fUQy8sUbfWzlSp/dlBFcE8auqs
TaxX68od1mAXzB/LjbVb9zPmqddXWUNcMDeIeuRvbGaY+1jnCTfY9QI7deq0
Gvvr5Ty4W3dlzq8I5lFvL9jKGk5f1GZdUNLa14mAzTsOqZvpyXFTVqhTp09f
4CLgWoEdPX5C3fXkXPXTulbVcbTrQhfYVwVGvqkmvLaSdYu1HfhQRTCPmrk8
yZCmOXHrwy6Y4SJq254Onnm/nByGb7jBrhFYrrNbjZ44X4381Wx1oOP40Ipg
HriCnhKb91sXuWC+Yvdq2XbGvDprk3VxyUH6sijVtvsw9+WRxqXoy8UuAr4k
MPIzPb3Hz1GHjnRe4gL7YolBIlf/SEUwj3o/vK04SB91wXxBRJFLqx+PaVGP
/s8yhEuBuTKxnGZi1abmPy/NZ3N59tI7aOJlsp0f082fK2nDglwnz3q9dSqW
VcY1+GrRAPMXUwtTbH3bgUudGpwrvyO2U+dVgVCSJSVbapU30II2jHTrarnx
5ly9tLy9MCFjc848cGAJHgiW5lcRm2lmI8rvY+Jp9eJhnxPrrNmiA2nd1AiC
T49KvxNWmFVNfoc6xEv9TrZVwk62Xu2Hj3MA+NlEDtafcI6aC20cZKCN+1QT
/Q3GNc/PJ4jPecsrc5Uoc+JkQT30/GJ1Cy1syb0dnzxTmXMklBhbX0OYvAbk
kPtjJpRXyY3J02M8XPNW77Iuc6pRjmQOVEaSSd4d9Mt88jeqVL4Mj/6s3FgQ
3cU6vPDOOmuY1sEYZT4jFkzuPcK04MGGxWAUbrBPCwzRA+ETnkAU8FMusCsF
pqf8cp7y6xLtlztgPagrpZXXZsdloU5YV7gIuEIELN+wV9OPplWI1W6wywVG
pEjdNnamuu+Zhaoz332lC+xTAsOCeO/TC5R33Cy198CxT7vAhtlWoEUE0xqK
rorv+0xFMI96a56OUBSprM+6YC4TUSs27nVGETfYJwW2M32kaI/jXd1XlRyn
T8jDti/8hHyBCOrnXGR8XGAgpVjbxBf+qCKYR70UWs89oiXVutoFc6ncmLty
J2Oea15rfd4F8zFRL07kD8svEiIKM26wjwrsAIVHLKl3PtGKZfULLrCPCIyc
jkk9mExb6vAXXWCXCAzz6YlXNR1Zsm73l0qO0yXSytSZm4r+82UXAReLAApn
jKl/YzXmkxvsIoFt3H6QjRegpCPfXfiKC2yowPYdOqZGjp+tfBPmIim4xgX2
YYGBy933zAJ161heBYa7wD4kMDjgY5Q/oH+RTemvVgTzqOffXsuQdxe3Wde6
YC6UG3bO0fhuzLqu5CBdIErRKPKT41+JgPVd5yLgfIFtSh5i34EPkS9d7wIb
IjAKWhzC7ySDEwu+wQU2WGBHjuU5EUAquiN9ROd+FRcJjdR0kDRPHqN+QakJ
Ejsi2TodleUUQspSU726E4PNx1UAq7tmFaXKiuYVdaBogvmFpUSy4K+dqYkL
Ra2yLZAHD7I1MVYgjWRnoNywIx+SCF06OAeGqo1f00sprlJaZ1WmPE9MRHyZ
tWpoXosI0aPYufLUQsKhWKXVy/6ijU2BUOyh+X2jc8Bci5oYnFBtrQqGgpoY
im3OqqhpawL+DgdG3aUzf/KmMzUxUFOPGCGXjjAdhaMKLS5V5zQq0U+UQHKM
qDi6fr7qOJb/ulOJ0sS0RhQkGk4a9Nig0qqn3X1UqlDTwVpIYV2XC82RpUZg
HUe7dGQhpbft7viGC6xaYCBiPycGizVn7db2b7rAPAJDoBnz0lJ7+fxzB6wH
VSUPY7mwWdvM5cm/cJHRR2Age5OmrWEYMbi/rAjmQS2wWBP8lguGpNiFUUgi
iWUQpwVh143QJerat82IU4Kw5xYsRpb7KzOiIIil6/cwvQMNyHV1f8eMOCkI
osM8a7COHT1+wlnjZkC3PEeEkdc7LPvk2H9jbvmEILBCItFB3kpLXZnqfF4Q
idRhXuHARijH+a4Z0SUIJFNgwaj80dL6d2ZEpyBAtFGCAuvZtS/7PTPiuCDo
KY0gOUR2vm9G5GwEJTeYitBs+56OH5gRxwSBdOgOQWzb0/H3vUfhqDy3u/0o
P+cdNxuz9YfmlrMOBKyDjImC0z+YEUccutgIGpF/NCM6BLEDNhWtCPFPZsRh
QZDubE+MAvX3n82IjCBQnINGkENj+C9mxCFBbEoeZG/6L0oMyAr/akYcFMT6
tgMcvOF/ew8e+7feo3BAnotu3s8FEORg5Kf/bm65XRDh2B4OlffQsnCwo/M/
zIj9gpgT2cFzH/OSYvR/mhH7BPGO8ALs8lB4/pFGfJDy5V7+rOEarJ3LYJ3P
nzhp3ayb/4AcsUQVs+RCv0c0AT184Z11xQyp+2TB+vGZmpwTRzyrKuZuUYaE
q4mvr2ZlUI0i5awRWplzpYm99TIWMUvplRK9jnd18zaNlPMxfNYtRb1+Jyyx
fDWTWeJOcUvsNcGJoc17S7bd5hwt1/JlaYKYO5vypa3HngNHecJiESPqcfuZ
epwDPSxRtSzlujtEPgIYwh32binQeJ3yyzHDAb/NDCssVSZFMpZ4LMQI6rRg
/kRLLhVKtgsCwQc0AqW29sPHR5oRbaI/SJe9e4lMMpvLW6PMsITAKJKoJyXd
w3wmlmPdYYZtFdhhIq2g+ZKcQbr1UweMUVukM1i/73pyHsff+at33WlufrMg
iNDyMGE927DtgM+MiAti1ooksyhwHVpr7jIjNkoXQG4nvxsrRmzK8K27zbAN
AkMhwCbQCIQIgD8zw9aLflihYQPo2LJs+z1mREwQqOtiLcQqHWs7cK8Zsdbh
Am/M3cyq+Z9diCTEuq/3oKyRh7Fli4oLHkY9jWKW5TfLiAqM+BdPYsCaF2zl
gb/fDFstnQGRxoKNztDgPmBGrBRB2Oewh+fB5xdjFlg/N8MiAsNezcMvasdE
2eoE+fODZtgK0S+yKc3UD7Fp7sqdATNimQjC2mNnLJilNK+th82wpQJDvQ/b
N4A9+1YUlSvrF73HKCxaIZnANEDsmLdq5yPm5hdL85jOttXgAkSErTFm2CKB
EUfmvMK2Whfxi0fNsAUCAxmYvqiNJzast2z9HmusGTZfYCgYowwOaWNfXgY+
Zj1mhs0TGOqEIKAYI1rH2PXGmWGtAsOERWSDtPvJJDQTrfG9LT5HHsakA8HF
w8GWjRwOHzfLmCUw7AfYMsAwN+84ZD1hhs0UGLYq7hBpU2ZsZFo3wQybITDK
/tTTb+pDNyhzxEnaU2bYe/zZl0kkhV+eg5xnz9gAiRM1shRNrZFrhXxO5fTF
noqZS3kzJC1g1bcHGyemaBW2ntYi9dILLlx+552/h+p0IaafqpVCTKXlzenS
f0QUFA3gP4hF0xclsAg841Smgk349oV8LYEHCkkmJS2UNp9FifMdMQ3yI3vW
YYsQ8XqS1ubs6asW1E/liEf5GiK2MBVt8KtGYvVlq53MF6eJWuCLdvkGc2Hx
2t1WQ1Gts2SvNo/MxYPK3xAtqhUjqtUYO1y21tnLbG/JOGLhxvxHaik7DFjN
nneOo2vhE/qAswqD5eELxio/zfmmGAtVGXsMcbaIIqn14pmauOzJq2yUlQvT
/Xw6TAOjiWalhzxfFzE4lmgzORDNhWtSmPKTncqUprnV4jopKCdzsDGc0u3r
IqhVrgpqa3CMKAWyVEww8JxXZm5EDewlrUGp0DRVkFhMZyzdXgxNICQUOF42
I4OCRFBD0EYFFUisrRu3H5xiRk4RJGYfRgwoMDMsL7SkBB1IBr4sz6OwjLM7
eB7L0LuL28AuppolvSTIncR/J7ymRwaMDoSZHPY1M3KyIBE87eOVsCoWiY6j
Xa+bkS84ZNprBMYC6TGts2+akQ2OftrnvbCwA7nvUG6aGTmpaNFDXJ0AEgEW
9Ihkvm1G6oWgH5+NXUajaDM31MKROFOaIeG7JHyiwLGVTKS6SEyxpoKcIgcK
9R7PJwVEmrEMjKVNl7D3C8b4vllmHX/2Z8dDuQp7ZTAwmsDWKjZB6F6LuYXx
ogD2cHHoD+yRXYNM9uL0dcwkZ5vh4wSOWi3GBh5lk1DMIWpWuE9JeK3oj22H
98LbuNvsJPSL8EGpBvSfZ27hEWkh332SBm0PO4ttASiBiZHJdi40t/CwXIMN
N+/MqGenraEAQ3i6hqiOvIquW0vMTTwk15CPvDo7jnN9xSYw/FOIvHXmTwrv
dgz/AwJEQgY2QBoXgTj4gBHBafAVZtk6p9JbpTgwi5hHeafdyn9PWsSsmAKy
tcrcymhpBc6LAgHGkjTv0WUJW5JCgLXG3MoNcs1ZSdTb+oM478ZCCY6NmWzP
aHANFBgOHenUrRTyhJWtsjPZXk2xeX6E/3WdXDMyxZzG3lTiuSpzT/QG/oBS
FUmFilOQK04Z1Vrn1Uj+DNhFGcs+pwXHpkSE7embMFfbs5pPp2B2rdiYRnHW
fuUhGw8V1zxvbUgxgcnFmG0V6YKHGUTAz3RBzDsYlLQItTmpk1ZkEy3UTE+V
KJlTlj6oUQnlzarWBn+V9NNX36KEWon4/irRHOghOEX75OymGdoHDfP+Wh+z
4fV4DlFlirAqRyREn0BtZWwwoulBoVCwz6EhB0IajahPQUXbvYYdrpYcEL6M
rR/UQrW34CBHmg+04ggiPKwlQNJbkvw9kyHOWsiqeDRKZCyiIgubmLO2xlLs
5NfYWpfk43kQdprH9LeQYncKJbWfxDQvHC5wN7qf49pmo1g/p0J+L+j0tTLF
4k1+xyD02MnQrOso9FPlzs0WN3GlGBoIRmCLy+QyNqAXrU0xIaZUyx4BRHbU
6hAmUVhDyUG/29GXXd1f7B64aIPyN8bsZAK1cLhwbbBFtTY30PeAamqNo1sy
AH1NCUdVUYJuIiq10wxZxtcYGy63y2YzfYvzSRsjq5qd5vc4zW95yrdYoekN
VXXL3nanoaVnvNQFNr0+A1fDu/E4ARZa0sZUj/Imq2j/MXo7GPUEBHos0IMd
9g/4HPaPNcL+Hmk21Uohpg7lIHJsCj+wu2250hlVj915GwORp141NTVwh5ti
GRtdNl1DskCujtPcFAY5hvmbYQbb7snm37a7oUWn3dnsPdY27iJYthqZRFiF
E9JmPsrqUFQeKuYBg4LVwWNAk++pn0/qaKsjlUAagZUYVB+1lQsdVkeaFc/r
lhPkRt5g0eocimppejXSZAhojZxWL5E3Vjla9nvrVaI9TZErphLJFLLjHquX
SUrtMfOpSHtB0kJOBe13WHKJZhWoa1JNpJu/KV5dvtEyDn+9dNR87LuvSrcG
OFPlk+KJkB3BhshtFFMQzpE1IZ/BmQrKorT1+zKLQ9UH1Ahbrzh1R5H/oqJ7
0UxDwSScpk6n+VB8MJ4tTjLeb9Fel7Pf4elrypSdPov4EAgllB2q/aGUjS6b
hvfMl4V0v9Aetje7bNujwWhTLZuRcuDq8o1WYHvzHlINv0vR7GAHwXBKInY/
3nlBooVUBekL2DdYN0UZy7Y+NtyRiOE+rI80klLbS6X5fCqsAtJ0oDHMUcUm
cPAx6YRlv6bVqy5gn6crZGK6ZINbgSD3YLhjCpUuM9SoRGtDsbn6ljiv5nZg
SYRqlT8YcwSW0m2V4ZH6uFF/5tU4SRGlhAy7Q3BFJGs49n/7Y7OqxVYolYCf
4Kjh7BU72LZEZY6aBegjkefxUSqUstsoEUNcn7tqJ2UUW7n+/jhNB+y5esfN
rmFB/TgrwcYcqv5IPDAweCsNGy95szR9Cvt8TpER75C24ngL3vHEm4doBmQe
hw/QRZTvMRkhSg6sUi+hwgDmYih14MUxxEswApgGJoKpUPbXUi37HDkWNqjT
tvuwPlznQX+rkH1WcS33ctYEWRxSIRwhj27Zx29/LScSjmwSnANZ8erN+5gg
ouqNnQ2EDuwLwW6wPDJ4rJ84XolXk6AdCh6gMzhqiQI7Ijp21tE75FnY7kON
8pbamedxJwdxPoxOYtMIk+C5aWvYMCCgeO0UFTskf6iiY8cMP/3P7DTsik6j
wSv4cyizKEQ1SEPzeE8AxSZEucdfibB2yFtRVX+jdTOLw7hgfNB7WAk2RnX1
RLdOh+R1wov0UJPEH2rSbnSGwf8L14b8QUbF13RV9Q9D9f9ARpmhurHEtZs+
wLVS7f3fFc+fZ/M/L/Tc/n3/fw72/wvS5zf4qUBm\
\>"]]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"Tanh", "[",
RowBox[{"alpha", "[", "amp", "]"}], "]"}], "-",
RowBox[{"alpha", "[", "amp", "]"}]}], ",",
RowBox[{"{",
RowBox[{"amp", ",", "0", ",", "10"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "Full"}]}], "]"}]], "Input",
CellChangeTimes->{{3.6693971405448637`*^9, 3.669397203984106*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVy3k81I0WBvBBCcVFm8qb4aJF2SqUcspWhEsqSyVrlpTXElmuBnnJnq0F
RVGyhSRJzo9QRJZkTYaxjGWMsWvEnfvH+ZzP9/M8j6St2zkHbhKJROHc/39a
oC2vkn2kRvLQbl4JZXniieXkMTOyM5h1V4XnTmwlug0jPMhkXyhxJX1gyGwm
lFWbnwt0BYN3frhv1T8ihM9pC6H15HtwycjkLyVrYaLCjHZ7zTEWNgkEJbkt
ChFcJaWslc54MOLTMNoRLEhIV7Blf7OTgP3UrcVbdxOhW3Py8qLEI7D0beUV
ObKRcGoMvT+nlQr5sSsnprQEiMj2hjqW41NIXbzyTcOVnzCb2hC4qJMB7j8z
+fe84iOcPHLEFjqfwZPfz7KEFzcQvgsGb+acM+Em12ZdTdMNRIQf03CWnQWa
XwW70z7wEvnBh0OmJV6B3BVdbbec9UQlb+dfzKIc+L3RzdxNfj3REuFbxtDK
A1HSxgOR79cRM/GVjHHH13CfK3VIcpCHCI5UrJkLKITLkhZ+ToE8RERTkMic
ThFoOER/NJPgIVJNpPNmOouBZtR9PfkGN5GZcGuZlf4G7mXQA9V2chP5P+p0
Wc4lwB2smiDdwEVUWjgPMNlvgW5sKjWkzEUM2BRsY0i8BwPVurEEKRIx/nzN
bpL+HvTvT8pUfl7DmWHjoomichjX4K8WN1rDdS6zZ8e1KqDW976MucMqynqo
BY06IszVs7jLy1ZQrEfb0VOMgHK93f5W51dQ3J8hOBtAwDv+iVGfGTZKf9S4
NKNTBcc9hZSSj7BR5dTA/HRnNawU/tAh2pfx2OC91L+Pf4ICmj1TPWgZNUKU
tabTPwH1fNUNd4VlPF0bEsd0rgEht23ltXFLaK4nKzfFroU87+oMF4dF9De5
bj0hUQ/Zwm+fN56dx9UQlR39UfUQXbD32yW+eaSUcrW1LddD3ETi5Oa6Oby7
66FW+fcGoDoO53Rrz2HMcI3svbBGeKawP6nJaBbTfXczZJnNYGxY90AkhoUi
HXPnBOVboEZ0Rj3RgoXn3CwVwuxbAPpNLrXJsPBHhgzdr7UFKGnXIm4S09jD
W2Fhm9sKeucFTK6wmUhroR9XuvodpoknrsL7GSjtYrQjN+k7zFscW2tun8Rr
PCXz0o3fwXShLyuBMon0I3cKxI62w92nJzRFeydw8vFWMmnzD3hBNjttlzKO
C/aaPM11HVDFZSFJ0aEj/3JKvat8DxTq9UWNyA6hWli3n75ND0SEWl+/MUVD
p63bD+xN7AHxC7JU71Ia1inFx9CWe0D7Bl+KwBka3nUJN7Ws7QVDm2NDvO6D
SPrp1Xf6ch/o7e0mVrqoqOhSHCMT2wdjiReamS+peHWJCTzVfaByNKHE0IeK
lVuuP6vc8wtuT7+U0NlORX9DG8cjs7/AK2VOi6fsF/r3v7gtokOFn5SSD/7M
Xox/oWNCsaJC9sUIscJHvZhzY2gf04cK5NEPWg+1e7GHLdnbmEOFIS3WdEBq
D6qJpZ0IFx6Ai+v52Y7nu3HBOIF7rXcAVBof1NrQOtC9+k7UpAcNRg4ctNLw
asMlkcT83kgaCOnUuJgfasNAm+xvDZk0SPaNIi3MtGIUqVX4VQcN1DaNyZR5
tmK2hlSSw7EhIN2j94B/C1LLa9J+cQ2D/T79dgOtJnQU6K5s2jkMYot5mvta
G3HKgtFfcWgYytr22MxebcSVpa1SKQ4cdxddOUv5imKqji/M6odhC/Eqc+Rr
PRq/4X/dEjcCUWdTf1dH12En9+4WfDUCQ/9SJI3tq0Orc8qsguoR4DN7GzBe
V4uuLMtD0XMjYNAVdzCApxbDFfLe6ZmPQlzogFD1P58Qc42Iagk6eB3cLLrv
LYG6bNuBIjU6HDd8LZhlRWCjvg93hgkd7LPCHk3zEdgz9lT7TggdwiXu3KVj
JS7sYX1RH6WDucr3mpMKFSifmdBaUjAG02MjfK6W73DLQ8VFon4MypiRqXfL
S5Ed2STeNDQGSzLK7bfFS/GL5wan4Z3jQDqqbTA7XIK2Wv6rW8PGYTreVlUh
thjPqIpJSz0bh/SSPQr/Xi1CBbm3evIfx8Fp5pDH7M0iXBFlJurOcvb+Xrvk
LhZi0qCtnM/VCaBytWbt9M7DgI414xC/CUgvjomccc9F24ZU79ikCSCX/Ncj
3j0H5Ys7ql5+nYBsO4q6akA2fgnSN+9SnQQyz6p9MGbiClk59KgwA9Iv6TE/
r0/FwS3NOTpyDKDGbWiW9n+M9XyuLSa6DFAsJvp/LT3E5OmsXS4BDCCR6nMa
BJMxYEjzlPcDBpCrM2OUshLRrqv/WnAxp+8l5WCtk4CKxI7ix3ROf96wLSU9
DreVlHa+4JkCKq+49ci7GPzz0vRP8e4psI5YLjc5FYUNsdFnvp6fgpMZ6TED
0WFYGLL/ZqcbJ7/tyRowCcVkn88JtAiOt+ucsNwfgnZXufrZxBRQLuuvCqsE
or7pk3V8P6eA0E4rVnP2Q8XT6vu3LHLcFiva0+CN29S7/kMWZQLFMTl+9LIn
rsjfunXgIBOohweO5kv+jYNSoilqZ5hAyqP87FZ1wfptrwltO44DUhVEn9hj
oYDBiHEgZ88/YST1xwqTV+kbrzzi5MH6XgfrL2DATKiScwnHIeLKZ+6cRbsR
KbNbzRx3Nn5Q1TyO+j0YEDTOsRpt47d0Mh6+P/+wYZVjIjCXaV5R+T9xVDz1
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{"DefaultBoundaryStyle" -> Automatic, "ScalingFunctions" -> None},
PlotRange->{{0, 10}, {-15.097892943640812`, -1.6896371288592504`*^-6}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.669397166412582*^9, 3.669397204388468*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"rabisys", "=",
RowBox[{
RowBox[{"I", " ",
RowBox[{"D", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"rabi1", "[", "x", "]"}], ",",
RowBox[{"rabi2", "[", "x", "]"}]}], "}"}], ",", "x"}], "]"}]}],
"\[Equal]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "omega"}], "/", "2"}], ",",
RowBox[{"w", " ",
RowBox[{"Exp", "[",
RowBox[{"I", " ", "k", " ", "x"}], "]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"w", " ",
RowBox[{"Exp", "[",
RowBox[{"I", " ", "k", " ", "x"}], "]"}]}], ",",
RowBox[{"omega", "/", "2"}]}], "}"}]}], "}"}], ".",
RowBox[{"{",
RowBox[{
RowBox[{"rabi1", "[", "x", "]"}], ",",
RowBox[{"rabi2", "[", "x", "]"}]}], "}"}]}]}]}]], "Input",
CellChangeTimes->{{3.669743279883703*^9, 3.6697433589205523`*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[ImaginaryI]", " ",
RowBox[{
SuperscriptBox["rabi1", "\[Prime]",
MultilineFunction->None], "[", "x", "]"}]}], ",",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{
SuperscriptBox["rabi2", "\[Prime]",
MultilineFunction->None], "[", "x", "]"}]}]}], "}"}], "\[Equal]",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ", "omega", " ",
RowBox[{"rabi1", "[", "x", "]"}]}], "+",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k", " ", "x"}]], " ", "w", " ",
RowBox[{"rabi2", "[", "x", "]"}]}]}], ",",
RowBox[{
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k", " ", "x"}]], " ", "w", " ",
RowBox[{"rabi1", "[", "x", "]"}]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "omega", " ",
RowBox[{"rabi2", "[", "x", "]"}]}]}]}], "}"}]}]], "Output",
CellChangeTimes->{3.669743360206357*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"rabiinit", "=",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"rabi1", "[", "0", "]"}], ",",
RowBox[{"rabi2", "[", "0", "]"}]}], "}"}], "\[Equal]",
RowBox[{"{",
RowBox[{"1", ",", "0"}], "}"}]}]}]], "Input",
CellChangeTimes->{{3.669743361877056*^9, 3.6697433719440403`*^9}, {
3.6697434194856863`*^9, 3.6697434219763002`*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"rabi1", "[", "0", "]"}], ",",
RowBox[{"rabi2", "[", "0", "]"}]}], "}"}], "\[Equal]",
RowBox[{"{",
RowBox[{"1", ",", "0"}], "}"}]}]], "Output",
CellChangeTimes->{3.669743372577815*^9, 3.669743422570909*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"DSolve", "[",
RowBox[{
RowBox[{"rabisys", "&&", "rabiinit"}], ",",
RowBox[{"{",
RowBox[{"rabi1", ",", "rabi2"}], "}"}], ",", "x"}], "]"}]], "Input",
CellChangeTimes->{{3.669743374246648*^9, 3.669743389288926*^9}}],
Cell[BoxData[
RowBox[{"DSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[ImaginaryI]", " ",
RowBox[{
SuperscriptBox["rabi1", "\[Prime]",
MultilineFunction->None], "[", "x", "]"}]}], ",",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{
SuperscriptBox["rabi2", "\[Prime]",
MultilineFunction->None], "[", "x", "]"}]}]}], "}"}], "\[Equal]",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ", "omega", " ",
RowBox[{"rabi1", "[", "x", "]"}]}], "+",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k", " ", "x"}]], " ", "w", " ",
RowBox[{"rabi2", "[", "x", "]"}]}]}], ",",
RowBox[{
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k", " ", "x"}]], " ", "w", " ",
RowBox[{"rabi1", "[", "x", "]"}]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "omega", " ",
RowBox[{"rabi2", "[", "x", "]"}]}]}]}], "}"}]}], "&&",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"rabi1", "[", "0", "]"}], ",",
RowBox[{"rabi2", "[", "0", "]"}]}], "}"}], "\[Equal]",
RowBox[{"{",
RowBox[{"1", ",", "0"}], "}"}]}]}], ",",
RowBox[{"{",
RowBox[{"rabi1", ",", "rabi2"}], "}"}], ",", "x"}], "]"}]], "Output",
CellChangeTimes->{
3.6697433901159286`*^9, {3.6697434234947844`*^9, 3.669743426211506*^9}}]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Reproduce Vacuum Oscillation Plots", "Subchapter",
CellChangeTimes->{{3.669759088833557*^9, 3.66975909777627*^9}}],
Cell["Damn has to use the original values", "Text",
CellChangeTimes->{{3.669759112411036*^9, 3.669759172740272*^9}, {
3.669759334561215*^9, 3.669759346328164*^9}}],
Cell[BoxData[{
RowBox[{
RowBox[{"theta12", "=",
RowBox[{
RowBox[{"33.36", "/", "180"}], "*", "Pi"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"theta13", "=",
RowBox[{
RowBox[{"8.66", "/", "180"}], "*", "Pi"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"theta23", "=",
RowBox[{
RowBox[{"40", "/", "180"}], "*", "Pi"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"deltacp", "=", "0"}], ";"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{"deltacp", "=",
RowBox[{
RowBox[{"300", "/", "180"}], "*", "Pi"}]}], ";"}],
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"m1sq", "=", "0.01"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"m2sq", "=",
RowBox[{"m1sq", "+", "0.000079"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"m3sq", "=",
RowBox[{"m2sq", "+", "0.0027"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"energy", "=",
RowBox[{"10", "^",
RowBox[{"(", "6", ")"}]}]}], ";"}],
RowBox[{"(*",
RowBox[{"1", "MeV"}], "*)"}]}]}], "Input",
CellChangeTimes->{{3.6697593587626743`*^9, 3.66975938092794*^9}, {
3.669759423929389*^9, 3.669759424096416*^9}}],
Cell["The PMNS matrix is", "Text",
CellChangeTimes->{{3.645967444715781*^9, 3.645967449674553*^9}}],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"pmns", "=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"Cos", "[", "theta12", "]"}],
RowBox[{"Cos", "[", "theta13", "]"}]}], ",",
RowBox[{
RowBox[{"Sin", "[", "theta12", "]"}],
RowBox[{"Cos", "[", "theta13", "]"}]}], ",",
RowBox[{
RowBox[{"Sin", "[", "theta13", "]"}],
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "I"}], " ", "deltacp"}], "]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{"Sin", "[", "theta12", "]"}]}],
RowBox[{"Cos", "[", "theta23", "]"}]}], "-",
RowBox[{
RowBox[{"Cos", "[", "theta12", "]"}],
RowBox[{"Sin", "[", "theta23", "]"}],
RowBox[{"Sin", "[", "theta13", "]"}],
RowBox[{"Exp", "[",
RowBox[{"I", " ", "deltacp"}], "]"}]}]}], ",",
RowBox[{
RowBox[{
RowBox[{"Cos", "[", "theta12", "]"}],
RowBox[{"Cos", "[", "theta23", "]"}]}], "-",
RowBox[{
RowBox[{"Sin", "[", "theta12", "]"}],
RowBox[{"Sin", "[", "theta23", "]"}],
RowBox[{"Sin", "[", "theta13", "]"}],
RowBox[{"Exp", "[",
RowBox[{"I", " ", "deltacp"}], "]"}]}]}], ",",
RowBox[{
RowBox[{"Sin", "[", "theta23", "]"}],
RowBox[{"Cos", "[", "theta13", "]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Sin", "[", "theta12", "]"}],
RowBox[{"Sin", "[", "theta23", "]"}]}], "-",
RowBox[{
RowBox[{"Cos", "[", "theta12", "]"}],
RowBox[{"Cos", "[", "theta23", "]"}],
RowBox[{"Sin", "[", "theta13", "]"}],
RowBox[{"Exp", "[",
RowBox[{"I", " ", "deltacp"}], "]"}]}]}], ",",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{"Cos", "[", "theta12", "]"}]}],
RowBox[{"Sin", "[", "theta23", "]"}]}], "-",
RowBox[{
RowBox[{"Sin", "[", "theta12", "]"}],
RowBox[{"Cos", "[", "theta23", "]"}],
RowBox[{"Sin", "[", "theta13", "]"}],
RowBox[{"Exp", "[",
RowBox[{"I", " ", "deltacp"}], "]"}]}]}], ",",
RowBox[{
RowBox[{"Cos", "[", "theta23", "]"}],
RowBox[{"Cos", "[", "theta13", "]"}]}]}], "}"}]}],
"}"}]}], "\[IndentingNewLine]",
RowBox[{"%", "//", "MatrixForm"}]}], "Input",
CellChangeTimes->{{3.645967453337373*^9, 3.645967688255081*^9}, {
3.645972760822361*^9, 3.6459727881139507`*^9}, {3.6459728459600563`*^9,
3.645972951027832*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"0.8257096935448757`", ",", "0.5436285229346872`", ",",
"0.15057068452350783`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.5020840339756528`"}], ",", "0.586602968074929`", ",",
"0.635459346199597`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.2571286153129655`", ",",
RowBox[{"-", "0.6003040786947345`"}], ",", "0.7573109587809376`"}],
"}"}]}], "}"}]], "Output",
CellChangeTimes->{{3.669759401570819*^9, 3.669759427868553*^9}}],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{"0.8257096935448757`", "0.5436285229346872`", "0.15057068452350783`"},
{
RowBox[{"-", "0.5020840339756528`"}], "0.586602968074929`",
"0.635459346199597`"},
{"0.2571286153129655`",
RowBox[{"-", "0.6003040786947345`"}], "0.7573109587809376`"}
},
GridBoxAlignment->{
"Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output",
CellChangeTimes->{{3.669759401570819*^9, 3.6697594278725967`*^9}}]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"hamilVac", "=",
RowBox[{
FractionBox["1",
RowBox[{"2", " ", "energy"}]],
RowBox[{"pmns", ".",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"m1sq", ",", "0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "m2sq", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "m3sq"}], "}"}]}], "}"}], ".",
RowBox[{"Transpose", "[", "pmns", "]"}]}]}]}], ";"}]], "Input",
CellChangeTimes->{{3.669759435705324*^9, 3.669759453998747*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"nuVac", "[", "x_", "]"}], "=",
RowBox[{"{",
RowBox[{
RowBox[{"nuVace", "[", "x", "]"}], ",",
RowBox[{"nuVacm", "[", "x", "]"}], ",",
RowBox[{"nuVact", "[", "x", "]"}]}], "}"}]}]], "Input",
CellChangeTimes->{{3.669759476460877*^9, 3.669759487569043*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"nuVace", "[", "x", "]"}], ",",
RowBox[{"nuVacm", "[", "x", "]"}], ",",
RowBox[{"nuVact", "[", "x", "]"}]}], "}"}]], "Output",
CellChangeTimes->{3.669759488784853*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"vacOsc", " ", "=", " ",
RowBox[{
RowBox[{"I", " ",
RowBox[{
RowBox[{"nuVac", "'"}], "[", "x", "]"}]}], "\[Equal]",
RowBox[{"hamilVac", ".",
RowBox[{"nuVac", "[", "x", "]"}]}]}]}]], "Input",
CellChangeTimes->{{3.66975949545111*^9, 3.669759509065502*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[ImaginaryI]", " ",
RowBox[{
SuperscriptBox["nuVace", "\[Prime]",
MultilineFunction->None], "[", "x", "]"}]}], ",",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{
SuperscriptBox["nuVacm", "\[Prime]",
MultilineFunction->None], "[", "x", "]"}]}], ",",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{
SuperscriptBox["nuVact", "\[Prime]",
MultilineFunction->None], "[", "x", "]"}]}]}], "}"}], "\[Equal]",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"5.043175605229582`*^-9", " ",
RowBox[{"nuVace", "[", "x", "]"}]}], "+",
RowBox[{"1.4554582913077885`*^-10", " ",
RowBox[{"nuVacm", "[", "x", "]"}]}], "+",
RowBox[{"1.455525329610883`*^-10", " ",
RowBox[{"nuVact", "[", "x", "]"}]}]}], ",",
RowBox[{
RowBox[{"1.455458291307794`*^-10", " ",
RowBox[{"nuVace", "[", "x", "]"}]}], "+",
RowBox[{"5.574684093009421`*^-9", " ",
RowBox[{"nuVacm", "[", "x", "]"}]}], "+",
RowBox[{"6.54773897905441`*^-10", " ",
RowBox[{"nuVact", "[", "x", "]"}]}]}], ",",
RowBox[{
RowBox[{"1.455525329610884`*^-10", " ",
RowBox[{"nuVace", "[", "x", "]"}]}], "+",
RowBox[{"6.54773897905441`*^-10", " ",
RowBox[{"nuVacm", "[", "x", "]"}]}], "+",
RowBox[{"5.811140301760994`*^-9", " ",
RowBox[{"nuVact", "[", "x", "]"}]}]}]}], "}"}]}]], "Output",
CellChangeTimes->{3.6697595103946457`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"solVac", "=",
RowBox[{"DSolve", "[",
RowBox[{
RowBox[{"vacOsc", "&&",
RowBox[{
RowBox[{"nuVac", "[", "0", "]"}], "\[Equal]",
RowBox[{"{",
RowBox[{"1", ",", "0", ",", "0"}], "}"}]}]}], ",",
RowBox[{"{",
RowBox[{"nuVace", ",", "nuVacm", ",", "nuVact"}], "}"}], ",", "x"}],
"]"}]}]], "Input",
CellChangeTimes->{{3.669759517636898*^9, 3.669759535568388*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"nuVace", "\[Rule]",
RowBox[{"Function", "[",
RowBox[{
RowBox[{"{", "x", "}"}], ",",
RowBox[{
RowBox[{"(",
RowBox[{"0.022671531037877734`", "\[VeryThinSpace]", "-",
RowBox[{"4.382192687997737`*^-18", " ", "\[ImaginaryI]"}]}], ")"}],
" ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "5.099196882228435`*^-26"}], " ", "x"}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"30.072803502987203`", "\[VeryThinSpace]", "-",
RowBox[{"4.1245016774392884`*^-15", " ", "\[ImaginaryI]"}]}],
")"}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"1.7053502429823677`*^-24", " ", "x"}]], " ",
RowBox[{"Cos", "[",
RowBox[{"5.`*^-9", " ", "x"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"13.035377736704206`", "\[VeryThinSpace]", "+",
RowBox[{"1.2650196258300222`*^-14", " ", "\[ImaginaryI]"}]}],
")"}], " ",
RowBox[{"Cos", "[",
RowBox[{"5.0394999999999986`*^-9", " ", "x"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"1.`", "\[VeryThinSpace]", "+",
RowBox[{"0.`", " ", "\[ImaginaryI]"}]}], ")"}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"5.099196882228435`*^-26", " ", "x"}]], " ",
RowBox[{"Cos", "[",
RowBox[{"6.3895000000000016`*^-9", " ", "x"}], "]"}]}], "-",
RowBox[{
RowBox[{"(",
RowBox[{"4.1245016774392884`*^-15", "+",
RowBox[{"30.072803502987203`", " ", "\[ImaginaryI]"}]}], ")"}],
" ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"1.7053502429823677`*^-24", " ", "x"}]], " ",
RowBox[{"Sin", "[",
RowBox[{"5.`*^-9", " ", "x"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"1.2650196258300222`*^-14", "-",
RowBox[{"13.035377736704206`", " ", "\[ImaginaryI]"}]}], ")"}],
" ",
RowBox[{"Sin", "[",
RowBox[{"5.0394999999999986`*^-9", " ", "x"}], "]"}]}], "-",
RowBox[{
RowBox[{"(",
RowBox[{"0.`", "\[VeryThinSpace]", "+",
RowBox[{"1.`", " ", "\[ImaginaryI]"}]}], ")"}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"5.099196882228435`*^-26", " ", "x"}]], " ",