|
| 1 | +import logging |
| 2 | +import os |
| 3 | +import pathlib |
| 4 | +from argparse import ArgumentParser |
| 5 | +from typing import Dict, List |
| 6 | + |
| 7 | +import torch as tr |
| 8 | +import torch.nn as nn |
| 9 | +from torch import Tensor |
| 10 | + |
| 11 | +from neutone_sdk import NeutoneParameter, ContinuousNeutoneParameter |
| 12 | +from neutone_sdk.non_realtime_wrapper import NonRealtimeBase |
| 13 | + |
| 14 | +logging.basicConfig() |
| 15 | +log = logging.getLogger(__name__) |
| 16 | +log.setLevel(level=os.environ.get("LOGLEVEL", "INFO")) |
| 17 | + |
| 18 | + |
| 19 | +class ClipperModel(nn.Module): |
| 20 | + def forward(self, |
| 21 | + x: Tensor, |
| 22 | + min_val: Tensor, |
| 23 | + max_val: Tensor, |
| 24 | + gain: Tensor) -> Tensor: |
| 25 | + tr.neg(min_val, out=min_val) |
| 26 | + tr.mul(gain, min_val, out=min_val) |
| 27 | + tr.mul(gain, max_val, out=max_val) |
| 28 | + tr.clip(x, min=min_val, max=max_val, out=x) |
| 29 | + return x |
| 30 | + |
| 31 | + |
| 32 | +class NonRealtimeClipperModelWrapper(NonRealtimeBase): |
| 33 | + def get_model_name(self) -> str: |
| 34 | + return "clipper" |
| 35 | + |
| 36 | + def get_model_authors(self) -> List[str]: |
| 37 | + return ["Christopher Mitcheltree"] |
| 38 | + |
| 39 | + def get_model_short_description(self) -> str: |
| 40 | + return "Audio clipper." |
| 41 | + |
| 42 | + def get_model_long_description(self) -> str: |
| 43 | + return "Clips the input audio between -1 and 1." |
| 44 | + |
| 45 | + def get_technical_description(self) -> str: |
| 46 | + return "Clips the input audio between -1 and 1." |
| 47 | + |
| 48 | + def get_technical_links(self) -> Dict[str, str]: |
| 49 | + return { |
| 50 | + "Code": "https://github.com/QosmoInc/neutone_sdk/blob/main/examples/neutone_gen/example_clipper_gen.py" |
| 51 | + } |
| 52 | + |
| 53 | + def get_tags(self) -> List[str]: |
| 54 | + return ["clipper"] |
| 55 | + |
| 56 | + def get_model_version(self) -> str: |
| 57 | + return "1.0.0" |
| 58 | + |
| 59 | + def is_experimental(self) -> bool: |
| 60 | + return False |
| 61 | + |
| 62 | + def get_neutone_parameters(self) -> List[NeutoneParameter]: |
| 63 | + return [ |
| 64 | + ContinuousNeutoneParameter("min", "min clip threshold", default_value=0.15), |
| 65 | + ContinuousNeutoneParameter("max", "max clip threshold", default_value=0.15), |
| 66 | + ContinuousNeutoneParameter("gain", "scale clip threshold", default_value=1.0), |
| 67 | + ] |
| 68 | + |
| 69 | + @tr.jit.export |
| 70 | + def get_audio_in_channels(self) -> List[int]: |
| 71 | + return [2] |
| 72 | + |
| 73 | + @tr.jit.export |
| 74 | + def get_audio_out_channels(self) -> List[int]: |
| 75 | + return [2] |
| 76 | + |
| 77 | + @tr.jit.export |
| 78 | + def get_native_sample_rates(self) -> List[int]: |
| 79 | + return [] # Supports all sample rates |
| 80 | + |
| 81 | + @tr.jit.export |
| 82 | + def get_native_buffer_sizes(self) -> List[int]: |
| 83 | + return [] # Supports all buffer sizes |
| 84 | + |
| 85 | + @tr.jit.export |
| 86 | + def is_one_shot_model(self) -> bool: |
| 87 | + return False |
| 88 | + |
| 89 | + def aggregate_continuous_params(self, cont_params: Tensor) -> Tensor: |
| 90 | + return cont_params # We want sample-level control, so no aggregation |
| 91 | + |
| 92 | + def do_forward_pass(self, |
| 93 | + curr_block_idx: int, |
| 94 | + audio_in: List[Tensor], |
| 95 | + knob_params: Dict[str, Tensor], |
| 96 | + text_params: List[str]) -> List[Tensor]: |
| 97 | + min_val, max_val, gain = (knob_params["min"], |
| 98 | + knob_params["max"], |
| 99 | + knob_params["gain"]) |
| 100 | + audio_out = [] |
| 101 | + for x in audio_in: |
| 102 | + x = self.model.forward(x, min_val, max_val, gain) |
| 103 | + audio_out.append(x) |
| 104 | + return audio_out |
| 105 | + |
| 106 | + |
| 107 | +if __name__ == "__main__": |
| 108 | + parser = ArgumentParser() |
| 109 | + parser.add_argument("-o", "--output", default="export_model") |
| 110 | + args = parser.parse_args() |
| 111 | + root_dir = pathlib.Path(args.output) |
| 112 | + |
| 113 | + model = ClipperModel() |
| 114 | + wrapper = NonRealtimeClipperModelWrapper(model) |
| 115 | + |
| 116 | + # TODO(cm): write export method for nonrealtime models |
| 117 | + wrapper.forward(0, [tr.rand(2, 2048)]) |
| 118 | + ts = tr.jit.script(wrapper) |
| 119 | + ts.forward(0, [tr.rand(2, 2048)]) |
0 commit comments