@@ -108,6 +108,11 @@ def __init__(self, model: nn.Module, use_debug_mode: bool = True) -> None:
108
108
109
109
self .n_numerical_params = self .n_cont_params + self .n_cat_params
110
110
111
+ assert self .get_default_param_values ().size (0 ) == self .n_numerical_params , (
112
+ f"Default parameter values tensor first dimension must have the same "
113
+ f"size as the number of numerical parameters. Expected size "
114
+ f"{ self .n_numerical_params } , got { self .get_default_param_values ().size (0 )} "
115
+ )
111
116
assert self .n_numerical_params <= constants .NEUTONE_GEN_N_NUMERICAL_PARAMS , (
112
117
f"Too many numerical (continuous and categorical) parameters. "
113
118
f"Max allowed is { constants .NEUTONE_GEN_N_NUMERICAL_PARAMS } "
@@ -146,10 +151,7 @@ def __init__(self, model: nn.Module, use_debug_mode: bool = True) -> None:
146
151
]
147
152
148
153
# TODO(cm): this statement will also be removed once core is refactored
149
- assert (
150
- len (self .get_default_param_names ())
151
- == constants .NEUTONE_GEN_N_NUMERICAL_PARAMS
152
- )
154
+ assert len (self .get_default_param_names ()) == self .n_numerical_params
153
155
154
156
assert all (
155
157
1 <= n <= 2 for n in self .get_audio_in_channels ()
@@ -194,7 +196,6 @@ def _create_default_param_values(self) -> Tensor:
194
196
elif p .type == NeutoneParameterType .CATEGORICAL :
195
197
# Convert to float to match the type of the continuous parameters
196
198
numerical_default_values .append (float (p .default_value ))
197
- assert len (numerical_default_values ) == self .n_numerical_params
198
199
numerical_default_values = tr .tensor (numerical_default_values )
199
200
return numerical_default_values
200
201
0 commit comments