-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathall_to_all.py
145 lines (124 loc) · 5.56 KB
/
all_to_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# Copyright 2023, The Ohio State University. All rights reserved.
# The MVAPICH software package is developed by the team members of
# The Ohio State University's Network-Based Computing Laboratory (NBCL),
# headed by Professor Dhabaleswar K. (DK) Panda.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import sys, os, time
COMMS_BENCH_DIR = os.path.join(os.path.dirname(__file__), "../")
sys.path.append(COMMS_BENCH_DIR)
from utils import *
from constants import *
from mcr_dl.cuda_accelerator import get_accelerator
def timed_all_to_all(input, output, start_event, end_event, args):
dist = mcr_dl.get_distributed_engine()
sync_all()
# Warmups, establish connections, etc.
for i in range(args.warmups):
dist.all_to_all_single(output, input, async_op=args.async_op)
sync_all()
# time the actual comm op trials times and average it
start_event.record()
for i in range(args.trials):
dist.all_to_all_single(output, input, async_op=args.async_op)
end_event.record()
sync_all()
duration = start_event.elapsed_time(end_event) / 1000
# maintain and clean performance data
avg_duration = duration / args.trials
size = input.element_size() * input.nelement()
n = dist.get_world_size()
tput, busbw = get_bw('all_to_all', size, avg_duration, args)
tput_str, busbw_str, duration_str = get_metric_strings(args, tput, busbw, avg_duration)
desc = f'{input.nelement()}x{input.element_size()}'
if not args.raw:
size = convert_size(size)
print_rank_0(f"{size:<20} {desc:25s} {duration_str:20s} {tput_str:20s} {busbw_str:20s}")
def run_all_to_all(local_rank, args):
dist = mcr_dl.get_distributed_engine()
world_size = dist.get_world_size()
global_rank = dist.get_rank()
# Prepare benchmark header
print_header(args, 'all_to_all')
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
if args.scan:
M_LIST = []
for x in (2**p for p in range(1, args.maxsize)):
M_LIST.append(x)
sync_all()
# loop over various tensor sizes
for M in M_LIST:
global_rank = dist.get_rank()
try:
mat = torch.ones(world_size, M,
dtype=getattr(torch, args.dtype)).to(get_accelerator().device_name(local_rank))
assert mat.numel() % world_size == 0, f"tensor cannot be divided in {world_size} chunks"
sync_all()
input = ((mat.mul_(float(global_rank))).view(-1))
output = (mat.clone().view(-1))
except RuntimeError as e:
if 'out of memory' in str(e):
if dist.get_rank() == 0:
print('WARNING: Ran out of GPU memory. Exiting comm op.')
sync_all()
break
else:
raise e
sync_all()
timed_all_to_all(input, output, start_event, end_event, args)
else:
# Send the biggest message size our GPUs can fit. If you're facing OOM errors, reduce the mem_factor
elements_per_gpu = max_numel(comm_op='all_to_all',
dtype=getattr(torch, args.dtype),
mem_factor=args.mem_factor,
local_rank=local_rank,
args=args)
try:
mat = torch.ones(elements_per_gpu, dtype=getattr(torch,
args.dtype)).to(get_accelerator().device_name(local_rank))
assert mat.numel(
) % world_size == 0, f"tensor with {mat.numel()} elements cannot be divided in {world_size} chunks"
input = ((mat.mul_(float(global_rank))).view(-1))
# Delete original mat to avoid OOM
del mat
get_accelerator().empty_cache()
output = torch.zeros(elements_per_gpu,
dtype=getattr(torch, args.dtype)).to(get_accelerator().device_name(local_rank))
except RuntimeError as e:
if 'out of memory' in str(e):
if dist.get_rank() == 0:
print('WARNING: Ran out of GPU memory. Try to reduce the --mem-factor argument!')
sync_all()
return
else:
raise e
sync_all()
if args.debug:
for i in range(world_size):
if i == global_rank:
print(f"Before AllToAll Input List at rank {global_rank}: {input}")
dist.barrier()
timed_all_to_all(input, output, start_event, end_event, args)
if args.debug:
for i in range(world_size):
if i == global_rank:
print(f"AllToAll Results at rank {global_rank}: {output}")
dist.barrier()
if __name__ == "__main__":
args = benchmark_parser().parse_args()
rank = args.local_rank
mcr_dl.init_processes(args.dist, args.backend)
run_all_to_all(local_rank=rank, args=args)