Skip to content

tensorflow on OSX Mac M1 pro/max silicon 32 cores and windows 11 13900k with dual RTX-A4500/A4000 workstation and dual GTX-4090 consumer #13

Open
@obriensystems

Description

@obriensystems

See move/updates on M4 Max, RTX-3500, RTX-6000
#71

and
ObrienlabsDev/machine-learning#30
ObrienlabsDev/machine-learning#31
ObrienlabsDev/machine-learning#32
ObrienlabsDev/machine-learning#33
ObrienlabsDev/machine-learning#34
ObrienlabsDev/machine-learning#35

Screenshot 2024-12-01 at 12 17 07

GTX-4090 Ada generation consumer cards

Screenshot 2023-10-29 at 13 44 47 Screenshot 2023-10-29 at 13 46 12

RTX-A4500 Ampere generation professional workstation cards

Screenshot 2023-10-29 at 13 39 43 Screenshot 2023-10-29 at 13 41 37 Screenshot 2023-10-29 at 13 42 27 Screenshot 2023-10-29 at 13 43 30

Stats

https://github.com/ObrienlabsDev/blog/wiki/Machine-Learning-on-local-or-Cloud-based-NVidia-or-Apple-GPUs

Note: CPU is 340% CPU only and 100% GPU therefore 100% is CPU overhead

Mac Mini 2020 M1

Macbook Pro 14 M1 Pro 16G 4p/4e 8 core GPU = 516ms/step CPU at 50%, 79ms/step GPU = 6.5x faster GPU
Macbook Pro 16 M1 Pro 32G 8p/1e 32 core GPU = 437ms/step CPU at 50%, 54ms/step GPU = 10.5x faster GPU and 1.2x/1.5x faster than M1 Pro (49ms using 32 batch down from 64 - matching GPU size - 2.4/32G vram)

Lenovo P17 Gen1 128g RTX-5000 TU104 using batch of 5120 = 190us and 15.6/16G vram

follow
https://developer.apple.com/metal/tensorflow-plugin/
better
https://www.mrdbourke.com/setup-apple-m1-pro-and-m1-max-for-machine-learning-and-data-science/

base system M1 Pro 4p/4e 8 core GPU


  181  ./Miniforge3-MacOSX-arm64.sh
  183  source ~/miniforge3/bin/activate
  185  cd wse_github
  186  cd tensor
  187  mkdir tensorflow-test
  188  cd tensorflow-test
  189  conda create --prefix ./env python=3.8 
  190  conda activate ./env
  191  conda install -c apple tensorflow-deps
  192  python -m pip install tensorflow-macos
  193  python -m pip install tensorflow-metal
  194  python -m pip install tensorflow-datasets
  195  conda install jupyter pandas numpy matplotlib scikit-learn
  196  jupyter notebook

other tab
vi tftest.py
 python tftest.py
 pip install numpy
 pip install pandas
 pip install sklearn
 pip install -U scikit-learn scipy matplotlib
 pip install -U tensorflow
  
(base) ..ien@mbp6 tensorflow-test % python tftest.py         
TensorFlow has access to the following devices:
[PhysicalDevice(name='/physical_device:CPU:0', device_type='CPU')]
TensorFlow version: 2.14.0


missing gpu
PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]


try
import tensorflow as tf
print(tf.config.list_physical_devices('GPU'))


(base) michaelobrien@mbp6 tensorflow-test % python gpu.py   
[]

Metadata

Metadata

Assignees

Labels

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions