This repository was archived by the owner on Jan 24, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 133
/
Copy pathcode_gen_cpp.cpp
680 lines (622 loc) · 30.5 KB
/
code_gen_cpp.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
#include "framework/lite/code_gen_cpp.h"
namespace anakin {
namespace lite {
template<typename Ttype, DataType Dtype, Precision Ptype>
void GenCPP<Ttype, Dtype, Ptype>::gen_license() {
_code<< "/* Copyright (c) 2018 Anakin Authors, Inc. All Rights Reserved.\n\n Licensed under the Apache License, Version 2.0 (the \"License\");\n you may not use this file except in compliance with the License.\n You may obtain a copy of the License at\n\n http://www.apache.org/licenses/LICENSE-2.0\n\n Unless required by applicable law or agreed to in writing, software\n distributed under the License is distributed on an \"AS IS\" BASIS,\n WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n See the License for the specific language governing permissions and\n limitations under the License.\n*/\n\n";
}
template<typename Ttype, DataType Dtype, Precision Ptype>
void GenCPP<Ttype, Dtype, Ptype>::gen_header_start() {
_code.Clean();
gen_license();
_code.feed("#ifndef ANAKIN_%s_H \n", _code_name.c_str());
_code.feed("#define ANAKIN_%s_H \n\n", _code_name.c_str());
_code<<"#include <stdio.h>\n";
_code<<"#include <stdlib.h>\n";
_code<<"#include <string.h>\n\n";
_code<<"#include <saber/lite/core/tensor_op_lite.h>\n";
_code<<"#include <saber/lite/core/common_lite.h>\n";
_code<<"#include <saber/lite/funcs/op_param.h>\n";
_code<<"#include <saber/lite/funcs/op_base.h>\n";
_code<<"#include <saber/lite/funcs/detection_lite.h>\n";
_code<<"#include <saber/lite/funcs/saber_activation.h>\n";
_code<<"#include <saber/lite/funcs/saber_concat.h>\n";
_code<<"#include <saber/lite/funcs/saber_detection_output.h>\n";
_code<<"#include <saber/lite/funcs/saber_eltwise.h>\n";
_code<<"#include <saber/lite/funcs/saber_eltwise_act.h>\n";
_code<<"#include <saber/lite/funcs/saber_permute.h>\n";
_code<<"#include <saber/lite/funcs/saber_power.h>\n";
_code<<"#include <saber/lite/funcs/saber_priorbox.h>\n";
_code<<"#include <saber/lite/funcs/saber_scale.h>\n";
_code<<"#include <saber/lite/funcs/saber_slice.h>\n";
_code<<"#include <saber/lite/funcs/timer_lite.h>\n";
_code<<"#include <saber/lite/funcs/saber_conv.h>\n";
_code<<"#include <saber/lite/funcs/saber_conv_act.h>\n";
_code<<"#include <saber/lite/funcs/saber_deconv.h>\n";
_code<<"#include <saber/lite/funcs/saber_deconv_act.h>\n";
_code<<"#include <saber/lite/funcs/saber_conv_act_pooling.h>\n";
_code<<"#include <saber/lite/funcs/saber_fc.h>\n";
_code<<"#include <saber/lite/funcs/saber_pooling.h>\n";
_code<<"#include <saber/lite/funcs/saber_split.h>\n";
_code<<"#include <saber/lite/funcs/saber_flatten.h>\n";
_code<<"#include <saber/lite/funcs/saber_reshape.h>\n";
_code<<"#include <saber/lite/funcs/saber_softmax.h>\n\n";
_code<<"using namespace anakin;\n";
_code<<"using namespace anakin::saber;\n";
_code<<"using namespace anakin::saber::lite;\n\n";
_code<<"namespace anakin { \n\n";
}
template<typename Ttype, DataType Dtype, Precision Ptype>
void GenCPP<Ttype, Dtype, Ptype>::gen_header_end() {
_code<<"} /* namespace anakin */\n";
_code<<"\n#endif\n";
}
template<typename Ttype, DataType Dtype, Precision Ptype>
void GenCPP<Ttype, Dtype, Ptype>::gen_source_start() {
_code.Clean();
_code.feed("#include \"%s.h\" \n\n", _code_name.c_str());
_code<<"namespace anakin { \n\n";
// add running impl for model api
}
template<typename Ttype, DataType Dtype, Precision Ptype>
void GenCPP<Ttype, Dtype, Ptype>::gen_source_end() {
_code<<"} /* namespace anakin */\n";
}
template<typename Ttype, DataType Dtype, Precision Ptype>
void GenCPP<Ttype, Dtype, Ptype>::gen_tensors() {
_code<<"\n// generating tensors \n";
for(auto it = this->_tensor_map.begin(); it != this->_tensor_map.end(); ++it) {
auto& edge_name = it->first;
auto& edge_info = it->second;
if(! edge_info.is_shared) {
_code.feed("Tensor<CPU, AK_FLOAT> %s_%s;\n", _code_name.c_str(), edge_name.c_str());
_code.feed("Shape %s_%s_real_shape(%d,%d,%d,%d);\n", _code_name.c_str(),
edge_name.c_str(),
edge_info.real_shape[0],
edge_info.real_shape[1],
edge_info.real_shape[2],
edge_info.real_shape[3]);
_code.feed("Shape %s_%s_valid_shape(%d,%d,%d,%d);\n", _code_name.c_str(),
edge_name.c_str(),
edge_info.valid_shape[0],
edge_info.valid_shape[1],
edge_info.valid_shape[2],
edge_info.valid_shape[3]);
}
}
for(auto it = this->_tensor_map.begin(); it != this->_tensor_map.end(); ++it) {
auto& edge_name = it->first;
auto& edge_info = it->second;
if(edge_info.is_shared) {
_code.feed("Tensor<CPU, AK_FLOAT> %s_%s;\n", _code_name.c_str(), edge_name.c_str());
_code.feed("Shape %s_%s_valid_shape(%d,%d,%d,%d);\n", _code_name.c_str(),
edge_name.c_str(),
edge_info.valid_shape[0],
edge_info.valid_shape[1],
edge_info.valid_shape[2],
edge_info.valid_shape[3]);
}
}
}
template<typename Ttype, DataType Dtype, Precision Ptype>
void GenCPP<Ttype, Dtype, Ptype>::tensors_init() {
_code<<"\n// initialize tensors \n";
_code.feed("void %s_tensors_init() {\n", _code_name.c_str());
for(auto it = this->_tensor_map.begin(); it != this->_tensor_map.end(); ++it) {
auto& edge_name = it->first;
auto& edge_info = it->second;
if(! edge_info.is_shared) {
_code.feed(" %s_%s.re_alloc(%s_%s_real_shape);\n", _code_name.c_str(), edge_name.c_str(), _code_name.c_str(), edge_name.c_str());
_code.feed(" %s_%s.set_shape(%s_%s_valid_shape);\n", _code_name.c_str(), edge_name.c_str(), _code_name.c_str(), edge_name.c_str());
}
}
for(auto it = this->_tensor_map.begin(); it != this->_tensor_map.end(); ++it) {
auto& edge_name = it->first;
auto& edge_info = it->second;
if(edge_info.is_shared) {
_code.feed(" %s_%s.set_shape(%s_%s_valid_shape);\n", _code_name.c_str(), edge_name.c_str(), _code_name.c_str(), edge_name.c_str());
_code.feed(" %s_%s.share_from(%s_%s);\n", _code_name.c_str(), edge_name.c_str(), _code_name.c_str(), edge_info.share_from.c_str());
}
}
_code<<"}\n";
}
template<typename Ttype, DataType Dtype, Precision Ptype>
void GenCPP<Ttype, Dtype, Ptype>::gen_model_ios() {
_code<<"\n// generating model's I/O \n";
_code.feed("std::vector<std::vector<Tensor<CPU, AK_FLOAT>*>> %s_tensor_ins;\n", _code_name.c_str());
_code.feed("std::vector<std::vector<Tensor<CPU, AK_FLOAT>*>> %s_tensor_outs;\n", _code_name.c_str());
// for(auto & node_name : this->_exec_node_order) {
// auto& node_info = this->_graph_node_map[node_name];
// _code.feed("std::vector<Tensor<CPU, AK_FLOAT>*> %s_ins;\n", node_name.c_str());
// _code.feed("std::vector<Tensor<CPU, AK_FLOAT>*> %s_outs;\n", node_name.c_str());
// }
}
template<typename Ttype, DataType Dtype, Precision Ptype>
void GenCPP<Ttype, Dtype, Ptype>::model_ios_init() {
_code<<"\n// initialize model's I/O \n";
_code.feed("void %s_model_ios_init() {\n", _code_name.c_str());
_code.feed(" %s_tensor_ins.resize(%d);\n", _code_name.c_str(), this->_exec_node_order.size());
_code.feed(" %s_tensor_outs.resize(%d);\n", _code_name.c_str(), this->_exec_node_order.size());
_code.feed(" for(int i = 0; i < %d; i++) {\n", this->_exec_node_order.size());
_code.feed(" %s_tensor_ins[i].clear();\n", _code_name.c_str());
_code.feed(" %s_tensor_outs[i].clear();\n", _code_name.c_str());
_code.feed(" }\n");
_code.feed(" int i = 0;\n");
for(auto & node_name : this->_exec_node_order) {
if(this->_graph_node_map[node_name].op_name == "Input" || this->_graph_node_map[node_name].op_name == "Output") {
continue;
}
auto& node_info = this->_graph_node_map[node_name];
for(auto &edge_in : node_info.ins) {
_code.feed(" %s_tensor_ins[i].push_back(&%s_%s);\n", _code_name.c_str(), _code_name.c_str(), edge_in.c_str());
}
for(auto &edge_out : node_info.outs) {
_code.feed(" %s_tensor_outs[i].push_back(&%s_%s);\n", _code_name.c_str(), _code_name.c_str(), edge_out.c_str());
}
_code.feed(" i++;\n");
}
_code<<"}\n";
}
template<typename Ttype, DataType Dtype, Precision Ptype>
void GenCPP<Ttype, Dtype, Ptype>::gen_ops() {
_code<<"\n// generating model's operations\n";
_code<<"\n// create vector of ops\n";
_code.feed("std::vector<OpBase*> %s_g_ops;\n", _code_name.c_str());
_code.feed("void %s_gen_ops() {\n", _code_name.c_str());
_code.feed(" if (%s_g_ops.size() > 0) {\n", _code_name.c_str());
_code.feed(" return;\n");
_code.feed(" }\n");
for(auto & node_name : this->_exec_node_order) {
if(this->_graph_node_map[node_name].op_name == "Input" || this->_graph_node_map[node_name].op_name == "Output") {
continue;
}
auto& node_info = this->_graph_node_map[node_name];
if(OPERATION_MAP.count(node_info.op_name) > 0) {
_code.feed(" OpBase* %s = new %s; \n", node_name.c_str(), OPERATION_MAP[node_info.op_name].OpClassName.c_str());
_code.feed("#if defined(ENABLE_OP_TIMER) || defined(ENABLE_DEBUG) \n");
_code.feed(" %s->set_op_name(\"%s\"); \n", node_name.c_str(), node_name.c_str());
_code.feed("#endif \n");
_code.feed(" %s_g_ops.push_back(%s);\n", _code_name.c_str(), node_name.c_str());
}
}
_code << "}\n";
}
template<typename Ttype, DataType Dtype, Precision Ptype>
void GenCPP<Ttype, Dtype, Ptype>::gen_init_impl() {
_code<<"// initial function for model.\n";
_code.feed("bool %s_init(Context& ctx) {\n", _code_name.c_str());
_code.feed(" bool flag = false;\n");
_code.feed(" for (int i = 0; i < %s_g_ops.size(); i++) {\n", _code_name.c_str());
_code.feed(" %s_g_ops[i]->compute_output_shape(%s_tensor_ins[i], %s_tensor_outs[i]);\n", _code_name.c_str(), _code_name.c_str(), _code_name.c_str());
_code.feed(" flag = %s_g_ops[i]->init(%s_tensor_ins[i], %s_tensor_outs[i], ctx);\n", _code_name.c_str(), _code_name.c_str(), _code_name.c_str());
_code.feed(" if (!flag) {\n");
_code.feed("#if defined(ENABLE_OP_TIMER) || defined(ENABLE_DEBUG) \n");
_code.feed(" printf(\"%s op init failed;\\n\", %s_g_ops[i]->get_op_name());\n", "%s", _code_name.c_str());
_code.feed("#endif \n");
_code.feed(" return false;\n");
_code.feed(" }\n");
_code << " }\n";
// for(auto & node_name : this->_exec_node_order) {
// if(this->_graph_node_map[node_name].op_name == "Input" || this->_graph_node_map[node_name].op_name == "Output") {
// continue;
// }
// auto& node_info = this->_graph_node_map[node_name];
// if(OPERATION_MAP.count(node_info.op_name) > 0) {
// _code.feed(" %s.compute_output_shape(%s_ins,%s_outs); \n", node_name.c_str(),
// node_name.c_str(),
// node_name.c_str());
// _code.feed(" %s.init(%s_ins,%s_outs,ctx); \n", node_name.c_str(),
// node_name.c_str(),
// node_name.c_str());
// }
// }
_code << " return true;\n";
_code << "}\n";
}
template<typename Ttype, DataType Dtype, Precision Ptype>
void GenCPP<Ttype, Dtype, Ptype>::gen_run_impl(const bool debug_mode) {
_code << "// Running prediction for model. \n";
_code.feed("bool %s_prediction() {\n", _code_name.c_str());
_code.feed(" bool flag = false;\n");
_code.feed(" for (int i = 0; i < %s_g_ops.size(); i++) {\n", _code_name.c_str());
_code.feed(" flag = %s_g_ops[i]->dispatch(%s_tensor_ins[i], %s_tensor_outs[i]);\n", _code_name.c_str(), _code_name.c_str(), _code_name.c_str());
_code.feed(" if (!flag) {\n");
_code.feed("#if defined(ENABLE_OP_TIMER) || defined(ENABLE_DEBUG) \n");
_code.feed(" printf(\"%s op dispatch failed;\\n\", %s_g_ops[i]->get_op_name());\n", "%s", _code_name.c_str());
_code.feed("#endif \n");
_code.feed(" return false;\n");
_code.feed(" }\n");
if (debug_mode) {
_code.feed(" for(int j = 0; j < %s_tensor_outs[i].size(); j++) {\n", _code_name.c_str());
_code.feed(" double mean_val = tensor_mean(*%s_tensor_outs[i][0]); \n", _code_name.c_str());
_code.feed("#if defined(ENABLE_OP_TIMER) || defined(ENABLE_DEBUG) \n");
_code.feed(" printf(\"mean_val in %s ops: %s \\n\", %s_g_ops[i]->get_op_name(), mean_val);\n", "%s", "%.6f", _code_name.c_str());
_code.feed("#else \n");
_code.feed(" printf(\"mean_val in ops: %s \\n\", mean_val);\n", "%.6f");
_code.feed("#endif \n");
_code.feed(" }\n");
}
_code << " }\n";
// for(auto & node_name : this->_exec_node_order) {
// if(this->_graph_node_map[node_name].op_name == "Input" || this->_graph_node_map[node_name].op_name == "Output") {
// continue;
// }
// auto& node_info = this->_graph_node_map[node_name];
// if(OPERATION_MAP.count(node_info.op_name) > 0) {
// /*
// _code.feed(" %s.compute_output_shape(%s_ins,%s_outs); \n", node_name.c_str(),
// node_name.c_str(),
// node_name.c_str());
// */
// _code.feed(" %s.dispatch(%s_ins,%s_outs); \n", node_name.c_str(),
// node_name.c_str(),
// node_name.c_str());
// if (debug_mode) {
// _code.feed(" double mean_%s = tensor_mean(*%s_outs[0]); \n", node_name.c_str(), node_name.c_str());
// _code.feed(" printf(\"%s run mean_val: %s %s\", mean_%s);\n", node_name.c_str(), "%.6f", "\\n", node_name.c_str());
// }
// }
// }
_code << " return true;\n";
_code << "}\n";
}
template<typename Ttype, DataType Dtype, Precision Ptype>
void GenCPP<Ttype, Dtype, Ptype>::gen_head_api() {
// gen gloss for graph ins
_code << "/// Model "<< _code_name << " have " << this->_ins.size() << " inputs.\n";
for(auto in : this->_ins) {
auto& node_info = this->_graph_node_map[in];
auto& edge_info = this->_tensor_map[node_info.outs[0]];
_code << "/// |-- input name : " << in << " -- Shape(";
std::string shape_str;
for(int i=0; i<edge_info.valid_shape.size() - 1; i++) {
_code << edge_info.valid_shape[i] << ",";
}
if(edge_info.valid_shape.size() > 0) {
_code << edge_info.valid_shape[edge_info.valid_shape.size() - 1] << ")\n";
} else {
_code << ")\n";
}
}
// gen api for getting graph input tensor
_code.feed("LITE_EXPORT std::vector<Tensor<CPU, AK_FLOAT>*> %s_get_in();\n\n", _code_name.c_str());
// gen gloss for graph outs
_code << "/// Model " << _code_name << " have " << this->_outs.size() << " outputs.\n";
for(auto out : this->_outs) {
auto& node_info = this->_graph_node_map[out];
auto& edge_info = this->_tensor_map[node_info.ins[0]];
_code << "/// |-- output name : " << out << " -- Shape(";
for(int i=0; i<edge_info.valid_shape.size() - 1; i++) {
_code << edge_info.valid_shape[i] << ",";
}
if(edge_info.valid_shape.size() > 0) {
_code << edge_info.valid_shape[edge_info.valid_shape.size() - 1] << ")\n";
} else {
_code << ")\n";
}
}
// gen api for getting graph output tensor
_code.feed("LITE_EXPORT std::vector<Tensor<CPU, AK_FLOAT>*> %s_get_out();\n\n", _code_name.c_str());
// gen weights loading function
_code.feed("LITE_EXPORT bool %s_load_param(const char* param_path);\n\n", _code_name.c_str());
// gen weights loading function from memory
_code.feed("LITE_EXPORT bool %s_load_weights(const void* weights);\n\n", _code_name.c_str());
// gen api for model init
_code.feed("/// %s_init should only be invoked once when input shape changes.\n", _code_name.c_str());
_code.feed("LITE_EXPORT bool %s_init(Context& ctx);\n\n", _code_name.c_str());
// gen api for model prediction
_code.feed("/// Running prediction for model %s.\n", _code_name.c_str());
_code.feed("LITE_EXPORT bool %s_prediction();\n\n", _code_name.c_str());
// gen free function
_code.feed("/// Release all resource used by model %s.\n", _code_name.c_str());
_code.feed("LITE_EXPORT void %s_release_resource();\n\n", _code_name.c_str());
}
template<typename Ttype, DataType Dtype, Precision Ptype>
void GenCPP<Ttype, Dtype, Ptype>::gen_head_api_impl() {
// gen api for getting graph input tensor
_code << "\n// gen api for getting graph input tensor \n";
_code.feed("std::vector<Tensor<CPU, AK_FLOAT>*> %s_get_in() {\n", _code_name.c_str());
_code.feed(" std::vector<Tensor<CPU, AK_FLOAT>*> vin;\n", this->_ins[0].c_str());
for(int i = 0; i < this->_ins.size(); i++) {
auto node_info = this->_graph_node_map[this->_ins[i]];
auto edge_info = this->_tensor_map[node_info.outs[0]];
_code.feed(" vin.push_back(&%s_%s);\n", _code_name.c_str(), edge_info.name.c_str());
}
_code.feed(" return vin;\n");
// _code.feed(" if(strcmp(in_name, \"%s\") == 0) {\n", this->_ins[0].c_str());
// auto node_info = this->_graph_node_map[this->_ins[0]];
// auto edge_info = this->_tensor_map[node_info.outs[0]];
// _code.feed(" return &%s;\n }", edge_info.name.c_str());
// for(int i = 1; i < this->_ins.size(); i++) {
// node_info = this->_graph_node_map[this->_ins[i]];
// edge_info = this->_tensor_map[node_info.outs[0]];
// _code.feed(" else if(strcmp(in_name, \"%s\") == 0) {\n", this->_ins[i].c_str());
// _code.feed(" return &%s;\n }\n", edge_info.name.c_str());
// }
// _code <<" else {\n return nullptr;\n }\n";
_code <<"}\n";
// gen api for getting graph output tensor
_code << "\n// gen api for getting graph output tensor \n";
_code.feed("std::vector<Tensor<CPU, AK_FLOAT>*> %s_get_out() {\n", _code_name.c_str());
_code.feed(" std::vector<Tensor<CPU, AK_FLOAT>*> vout;\n");
for(int i = 0; i < this->_outs.size(); i++) {
auto node_info = this->_graph_node_map[this->_outs[i]];
auto edge_info = this->_tensor_map[node_info.ins[0]];
_code.feed(" vout.push_back(&%s_%s);\n", _code_name.c_str(), edge_info.name.c_str());
}
_code.feed(" return vout;\n");
// _code.feed(" if(strcmp(out_name, \"%s\") == 0) {\n", this->_outs[0].c_str());
// node_info = this->_graph_node_map[this->_outs[0]];
// edge_info = this->_tensor_map[node_info.ins[0]];
// _code.feed(" return &%s;\n }", edge_info.name.c_str());
// for(int i = 1; i < this->_outs.size(); i++) {
// node_info = this->_graph_node_map[this->_outs[i]];
// edge_info = this->_tensor_map[node_info.ins[0]];
// _code.feed(" else if(strcmp(out_name ,\"%s\") == 0) {\n", this->_outs[i].c_str());
// _code.feed(" return &%s;\n }\n", edge_info.name.c_str());
// }
// _code <<" else {\n return nullptr;\n }\n";
_code <<"}\n\n";
// gen weights loading function
_code.feed("float *%s = nullptr; // global weights start pointer \n", _g_weights_ptr_name.c_str());
_code.feed("std::vector<ParamBase*> %s_g_param; // global vector of param \n", _code_name.c_str());
_code.feed("bool %s_load_param(const char* param_path) {\n", _code_name.c_str());
_code << " FILE *f = fopen(param_path, \"rb\"); \n";
_code << " if(!f) {\n";
_code << " return false;\n }\n";
_code << " fseek(f, 0, SEEK_END);\n";
_code << " long fsize = ftell(f);\n";
_code << " fseek(f, 0, SEEK_SET);\n";
_code.feed(" if(%s) {\n", _g_weights_ptr_name.c_str());
_code.feed(" delete [] %s;\n", _g_weights_ptr_name.c_str());
_code.feed(" %s = nullptr;\n", _g_weights_ptr_name.c_str());
_code.feed(" }\n");
_code.feed(" %s = new float[fsize + 1];\n", _g_weights_ptr_name.c_str());
_code.feed(" fread(%s, fsize, sizeof(float), f);\n", _g_weights_ptr_name.c_str());
_code << " fclose(f);\n";
_code.feed(" %s_load_weights((const void*)%s);\n", _code_name.c_str(), _g_weights_ptr_name.c_str());
_code << "}";
_code.feed("bool %s_load_weights(const void* weights) {\n", _code_name.c_str());
_code.feed(" if (weights == nullptr) {\n"); // invoke (model_name)_tensors_init()
_code.feed(" return false;\n"); // invoke (model_name)_tensors_init()
_code.feed(" }\n"); // invoke (model_name)_tensors_init()
_code.feed(" %s_tensors_init();\n", _code_name.c_str()); // invoke (model_name)_tensors_init()
_code.feed(" %s_model_ios_init();\n", _code_name.c_str()); // invoke (model_name)_model_ios_init()
_code.feed(" for (int i = 0; i < %s_g_param.size(); i++) {\n", _code_name.c_str());
_code.feed(" if (%s_g_param[i]) {\n", _code_name.c_str());
_code.feed(" delete %s_g_param[i];\n", _code_name.c_str());
_code.feed(" }\n");
_code.feed(" %s_g_param[i] = nullptr;\n", _code_name.c_str());
_code.feed(" }\n");
_code.feed(" %s_g_param.clear();\n", _code_name.c_str());
_code.feed(" const float* weights_ptr = (const float*)weights;\n");
std::string local_weight_string = "weights_ptr";
for(auto & node_name : this->_exec_node_order) {
if(this->_graph_node_map[node_name].op_name == "Input" || this->_graph_node_map[node_name].op_name == "Output") {
continue;
}
auto& node_info = this->_graph_node_map[node_name];
auto& attr_info = this->_graph[node_name]->attr();
if(OPERATION_MAP.count(node_info.op_name) > 0) {
LOG(INFO) << "Target op type : " << this->_graph_node_map[node_name].op_name << " parsing ...";
auto str = OPERATION_MAP[node_info.op_name].parse(attr_info, _code_name,
OPERATION_MAP[node_info.op_name].OpClassName,
node_name,
local_weight_string,
_weights, false);
if(!str.empty()) {
_code.feed(" %s", str.c_str());
}
} else {
LOG(FATAL) << "Target op type : " << this->_graph_node_map[node_name].op_name << " not support";
}
}
_code.feed(" %s_gen_ops();\n", _code_name.c_str());
_code.feed(" for (int i = 0; i < %s_g_ops.size(); i++) {\n", _code_name.c_str());
_code.feed(" SaberStatus state = %s_g_ops[i]->load_param(%s_g_param[i]);\n", _code_name.c_str(), _code_name.c_str());
_code.feed(" if (state != SaberSuccess) { \n");
_code.feed(" printf(\"load param failed\\n\");\n");
_code.feed(" }\n");
_code.feed(" }\n");
_code << " return true;\n";
_code <<"}\n\n";
// release all resource function impl
_code.feed("void %s_release_resource() {\n", _code_name.c_str());
_code.feed(" for (int i = 0; i < %s_g_ops.size(); i++) {\n", _code_name.c_str());
_code.feed(" if (%s_g_ops[i]) {\n", _code_name.c_str());
_code.feed(" delete %s_g_ops[i];\n", _code_name.c_str());
_code.feed(" %s_g_ops[i] = nullptr;\n", _code_name.c_str());
_code.feed(" }\n");
_code.feed(" }\n");
_code.feed(" %s_g_ops.clear();\n", _code_name.c_str());
_code.feed(" for (int i = 0; i < %s_g_param.size(); i++) {\n", _code_name.c_str());
_code.feed(" if (%s_g_param[i]) {\n", _code_name.c_str());
_code.feed(" delete %s_g_param[i];\n", _code_name.c_str());
_code.feed(" %s_g_param[i] = nullptr;\n", _code_name.c_str());
_code.feed(" }\n");
_code.feed(" }\n");
_code.feed(" %s_g_param.clear();\n", _code_name.c_str());
_code.feed(" if (%s) {\n", _g_weights_ptr_name.c_str());
_code.feed(" delete [] %s;\n", _g_weights_ptr_name.c_str());
_code.feed(" %s = nullptr;\n", _g_weights_ptr_name.c_str());
_code.feed(" }\n", _g_weights_ptr_name.c_str());
_code <<"}\n\n";
}
template<typename Ttype, DataType Dtype, Precision Ptype>
void GenCPP<Ttype, Dtype, Ptype>::gen_header() {
_code.Clean();
_code.open(_h_file_name);
gen_header_start();
// gen api
gen_head_api();
gen_header_end();
_code.save();
}
template<typename Ttype, DataType Dtype, Precision Ptype>
void GenCPP<Ttype, Dtype, Ptype>::gen_source(const bool debug_mode) {
_code.Clean();
_code.open(_cpp_file_name);
gen_source_start();
// generate tensors
gen_tensors();
// tensors init
tensors_init();
// generate i/o
gen_model_ios();
// initial model i/o
model_ios_init();
// generate ops
gen_ops();
// gen head api implement
gen_head_api_impl();
// gen initial api impl
gen_init_impl();
// gen running api impl
gen_run_impl(debug_mode);
gen_source_end();
_code.save();
gen_opt_model();
if (!_flag_aot) {
gen_merge_model();
}
}
template<typename Ttype, DataType Dtype, Precision Ptype>
void GenCPP<Ttype, Dtype, Ptype>::gen_opt_model() {
//! generate Tensors
LOG(INFO) << "gen opt model tensors";
_opt_param_write << "Tensor_number " << this->_tensor_map.size() << "\n";
//! firstly, gen tensor withnot shared
for(auto it = this->_tensor_map.begin(); it != this->_tensor_map.end(); ++it) {
auto& edge_name = it->first;
auto& edge_info = it->second;
if(! edge_info.is_shared) {
//tensor info format: tensor_name valid_shape real_shape is_shared shared_tensor_name
_opt_param_write << edge_name << " ";
_opt_param_write << edge_info.valid_shape.size() << " ";
for (int i = 0; i < edge_info.valid_shape.size(); ++i) {
_opt_param_write << edge_info.valid_shape[i] << " ";
}
_opt_param_write << edge_info.real_shape.size() << " ";
for (int i = 0; i < edge_info.real_shape.size(); ++i) {
_opt_param_write << edge_info.real_shape[i] << " ";
}
_opt_param_write << 0 << " " << "null" << "\n";
}
}
//! then gen tensor shared memory
for(auto it = this->_tensor_map.begin(); it != this->_tensor_map.end(); ++it) {
auto& edge_name = it->first;
auto& edge_info = it->second;
if(edge_info.is_shared) {
//tensor info format: tensor_name valid_shape real_shape is_shared shared_tensor_name
_opt_param_write << edge_name << " ";
_opt_param_write << edge_info.valid_shape.size() << " ";
for (int i = 0; i < edge_info.valid_shape.size(); ++i) {
_opt_param_write << edge_info.valid_shape[i] << " ";
}
_opt_param_write << edge_info.valid_shape.size() << " ";
for (int i = 0; i < edge_info.valid_shape.size(); ++i) {
_opt_param_write << edge_info.valid_shape[i] << " ";
}
_opt_param_write << 1 << " " << edge_info.share_from << "\n";
}
}
//! gen inputs and outputs tensor name
_opt_param_write << "inputs " << this->_ins.size();
for(auto in : this->_ins) {
auto node_info = this->_graph_node_map[in];
auto edge_info = this->_tensor_map[node_info.outs[0]];
_opt_param_write << " " << edge_info.name;
}
_opt_param_write << "\n";
//! gen outputs and outputs tensor name
_opt_param_write << "outputs " << this->_outs.size();
for(auto out : this->_outs) {
auto node_info = this->_graph_node_map[out];
auto edge_info = this->_tensor_map[node_info.ins[0]];
_opt_param_write << " " << edge_info.name;
}
_opt_param_write << "\n";
//! gen ops and params
int op_num = this->_exec_node_order.size();
for(auto & node_name : this->_exec_node_order) {
if (this->_graph_node_map[node_name].op_name == "Input" ||
this->_graph_node_map[node_name].op_name == "Output") {
op_num--;
}
}
_opt_param_write << "OPS " << op_num << "\n";
for(auto & node_name : this->_exec_node_order) {
if(this->_graph_node_map[node_name].op_name == "Input" || this->_graph_node_map[node_name].op_name == "Output") {
continue;
}
auto& node_info = this->_graph_node_map[node_name];
auto& attr_info = this->_graph[node_name]->attr();
if(OPERATION_MAP.count(node_info.op_name) > 0) {
LOG(INFO) << "Target op type : " << this->_graph_node_map[node_name].op_name << " parsing ...";
_opt_param_write << OPERATION_MAP[node_info.op_name].OpClassName << " " << node_name << " ";
_opt_param_write << node_info.ins.size() << " ";
_opt_param_write << node_info.outs.size() << " ";
for(auto &edge_in : node_info.ins) {
_opt_param_write << edge_in << " ";
}
for(auto &edge_out : node_info.outs) {
_opt_param_write << edge_out.c_str() << " ";
}
std::string local_weighs_string = "null";
auto str = OPERATION_MAP[node_info.op_name].parse(attr_info, _code_name,
OPERATION_MAP[node_info.op_name].OpClassName,
node_name,
local_weighs_string,
_opt_weights,
true);
_opt_param_write << str;
} else {
LOG(FATAL) << "Target op type : " << this->_graph_node_map[node_name].op_name << " not support";
}
}
_opt_param_write.save();
}
template<typename Ttype, DataType Dtype, Precision Ptype>
void GenCPP<Ttype, Dtype, Ptype>::gen_merge_model() {
FILE* fp_merge = fopen(_merge_opt_file.c_str(), "wb");
FILE* fp_weight = fopen(_model_file_name.c_str(), "rb");
FILE* fp_info = fopen(_model_opt_file_name.c_str(), "rb");
fseek(fp_weight, 0, SEEK_END);
long wsize = ftell(fp_weight);
fseek(fp_weight, 0, SEEK_SET);
char* wbuffer = new char[wsize + 1];
fread(wbuffer, wsize, 1, fp_weight);
fseek(fp_info, 0, SEEK_END);
long isize = ftell(fp_info);
fseek(fp_info, 0, SEEK_SET);
char* ibuffer = new char[isize + 1];
fread(ibuffer, isize, 1, fp_info);
fprintf(fp_merge, "Wsize %lu\n", wsize);
fwrite(wbuffer, wsize, 1, fp_merge);
fwrite(ibuffer, isize, 1, fp_merge);
fflush(fp_merge);
fclose(fp_merge);
fclose(fp_weight);
fclose(fp_info);
delete [] wbuffer;
delete [] ibuffer;
}
#ifdef USE_CUDA
template class GenCPP<NV, AK_FLOAT, Precision::FP32>;
template class GenCPP<NV, AK_FLOAT, Precision::FP16>;
template class GenCPP<NV, AK_FLOAT, Precision::INT8>;
#endif
#ifdef USE_X86_PLACE
template class GenCPP<X86, AK_FLOAT, Precision::FP32>;
template class GenCPP<X86, AK_FLOAT, Precision::FP16>;
template class GenCPP<X86, AK_FLOAT, Precision::INT8>;
#endif
#ifdef USE_ARM_PLACE
template class GenCPP<ARM, AK_FLOAT, Precision::FP32>;
template class GenCPP<ARM, AK_FLOAT, Precision::FP16>;
template class GenCPP<ARM, AK_FLOAT, Precision::INT8>;
#endif
template class GenCPP<X86, AK_FLOAT, Precision::FP32>;
} /* namespace lite */
} /* namespace anakin */