English | 简体中文
- python >= 3.5
- pytorch 1.12.0
- onnx 1.10.0
- onnxsim 0.4.8
git clone -b onnx https://github.com/PeterL1n/RobustVideoMatting.git
cd RobustVideoMatting
Remove the downsample_ratio
input in model/model.py
.
def forward(self, src, r1, r2, r3, r4,
# downsample_ratio: float = 0.25,
segmentation_pass: bool = False):
if torch.onnx.is_in_onnx_export():
# src_sm = CustomOnnxResizeByFactorOp.apply(src, 0.25)
src_sm = self._interpolate(src, scale_factor=0.25)
elif downsample_ratio != 1:
src_sm = self._interpolate(src, scale_factor=0.25)
else:
src_sm = src
f1, f2, f3, f4 = self.backbone(src_sm)
f4 = self.aspp(f4)
hid, *rec = self.decoder(src_sm, f1, f2, f3, f4, r1, r2, r3, r4)
if not segmentation_pass:
fgr_residual, pha = self.project_mat(hid).split([3, 1], dim=-3)
# if torch.onnx.is_in_onnx_export() or downsample_ratio != 1:
if torch.onnx.is_in_onnx_export():
fgr_residual, pha = self.refiner(src, src_sm, fgr_residual, pha, hid)
fgr = fgr_residual + src
fgr = fgr.clamp(0., 1.)
pha = pha.clamp(0., 1.)
return [fgr, pha, *rec]
else:
seg = self.project_seg(hid)
return [seg, *rec]
Modify export_onnx.py
script to remove the downsample_ratio
input
def export(self):
rec = (torch.zeros([1, 1, 1, 1]).to(self.args.device, self.precision),) * 4
# src = torch.randn(1, 3, 1080, 1920).to(self.args.device, self.precision)
src = torch.randn(1, 3, 1920, 1080).to(self.args.device, self.precision)
# downsample_ratio = torch.tensor([0.25]).to(self.args.device)
dynamic_spatial = {0: 'batch_size', 2: 'height', 3: 'width'}
dynamic_everything = {0: 'batch_size', 1: 'channels', 2: 'height', 3: 'width'}
torch.onnx.export(
self.model,
# (src, *rec, downsample_ratio),
(src, *rec),
self.args.output,
export_params=True,
opset_version=self.args.opset,
do_constant_folding=True,
# input_names=['src', 'r1i', 'r2i', 'r3i', 'r4i', 'downsample_ratio'],
input_names=['src', 'r1i', 'r2i', 'r3i', 'r4i'],
output_names=['fgr', 'pha', 'r1o', 'r2o', 'r3o', 'r4o'],
dynamic_axes={
'src': {0: 'batch_size0', 2: 'height0', 3: 'width0'},
'fgr': {0: 'batch_size1', 2: 'height1', 3: 'width1'},
'pha': {0: 'batch_size2', 2: 'height2', 3: 'width2'},
'r1i': {0: 'batch_size3', 1: 'channels3', 2: 'height3', 3: 'width3'},
'r2i': {0: 'batch_size4', 1: 'channels4', 2: 'height4', 3: 'width4'},
'r3i': {0: 'batch_size5', 1: 'channels5', 2: 'height5', 3: 'width5'},
'r4i': {0: 'batch_size6', 1: 'channels6', 2: 'height6', 3: 'width6'},
'r1o': {0: 'batch_size7', 2: 'height7', 3: 'width7'},
'r2o': {0: 'batch_size8', 2: 'height8', 3: 'width8'},
'r3o': {0: 'batch_size9', 2: 'height9', 3: 'width9'},
'r4o': {0: 'batch_size10', 2: 'height10', 3: 'width10'},
})
Run the following commands
python export_onnx.py \
--model-variant mobilenetv3 \
--checkpoint rvm_mobilenetv3.pth \
--precision float32 \
--opset 12 \
--device cuda \
--output rvm_mobilenetv3.onnx
Note:
- For the dynamic shape of the multi-input ONNX model in trt, if the shapes of x0 and x1 are different, we cannot use height and width but height0 and height1 to differentiate them, otherwise, there will be some mistakes when building engine
Install onnxsim and simplify the ONNX model exported in step 3
pip install onnxsim
onnxsim rvm_mobilenetv3.onnx rvm_mobilenetv3_trt.onnx
rvm_mobilenetv3_trt.onnx
: The ONNX model in dynamic shape that can run the TRT backend