Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

关于压缩版First Order Motion 模型的重建损失 #473

Open
shiyuleixia opened this issue Nov 10, 2021 · 1 comment
Open

关于压缩版First Order Motion 模型的重建损失 #473

shiyuleixia opened this issue Nov 10, 2021 · 1 comment
Assignees

Comments

@shiyuleixia
Copy link

shiyuleixia commented Nov 10, 2021

我按照Doc中的方法,基于vox_mobile.pdparams 的预训练模型,并把mode改成了both进行迁移学习,使用的是经过预处理的voxceleb1的数据集,但是无论我怎么训练重建损失都没办法收敛到0.015这么小,我只能训练到0.04以上,所以想请教下如何更近一步减小reconstruction loss,而且除了验证的指标,在训练期间的其它损失指标也都很不稳定
image
下面是我的配置,和repository里提供的是一样的:
epochs: 100
output_dir: output_dir

dataset:
train:
name: FirstOrderDataset
batch_size: 8
num_workers: 4
use_shared_memory: False
phase: train
#dataroot: data/first_order/Voxceleb/
dataroot: /data/yyking/video-preprocessing/vox-png
frame_shape: [256, 256, 3]
id_sampling: True
pairs_list: None
time_flip: True
num_repeats: 75
create_frames_folder: False
transforms:
- name: PairedRandomHorizontalFlip
prob: 0.5
keys: [image, image]
- name: PairedColorJitter
brightness: 0.1
contrast: 0.1
saturation: 0.1
hue: 0.1
keys: [image, image]
test:
name: FirstOrderDataset
dataroot: /data/yyking/video-preprocessing/vox-png
phase: test
batch_size: 1
num_workers: 1
time_flip: False
id_sampling: False
create_frames_folder: False
frame_shape: [ 256, 256, 3 ]

model:
name: FirstOrderModelMobile
mode: both # should be kp_detector, generator, both
kp_weight_path: /home/cmcm/jaccob/first-order-model/vox_mobile.pdparams
gen_weight_path: /home/cmcm/jaccob/first-order-model/vox_mobile.pdparams
common_params:
num_kp: 10
num_channels: 3
estimate_jacobian: True
generator:
name: FirstOrderGenerator
kp_detector_cfg:
temperature: 0.1
block_expansion: 32
max_features: 256
scale_factor: 0.25
num_blocks: 5
mobile_net: True
generator_cfg:
block_expansion: 32
max_features: 256
num_down_blocks: 2
num_bottleneck_blocks: 6
estimate_occlusion_map: True
dense_motion_params:
block_expansion: 32
max_features: 256
num_blocks: 5
scale_factor: 0.25
mobile_net: True
generator_ori:
name: FirstOrderGenerator
kp_detector_cfg:
temperature: 0.1
block_expansion: 32
max_features: 1024
scale_factor: 0.25
num_blocks: 5
generator_cfg:
block_expansion: 64
max_features: 512
num_down_blocks: 2
num_bottleneck_blocks: 6
estimate_occlusion_map: True
dense_motion_params:
block_expansion: 64
max_features: 1024
num_blocks: 5
scale_factor: 0.25
discriminator:
name: FirstOrderDiscriminator
discriminator_cfg:
scales: [1]
block_expansion: 32
max_features: 512
num_blocks: 4
sn: True
train_params:
num_epochs: 100
scales: [1, 0.5, 0.25, 0.125]
checkpoint_freq: 50
transform_params:
sigma_affine: 0.05
sigma_tps: 0.005
points_tps: 5
loss_weights:
generator_gan: 1
discriminator_gan: 1
feature_matching: [10, 10, 10, 10]
perceptual: [10, 10, 10, 10, 10]
equivariance_value: 10
equivariance_jacobian: 10

lr_scheduler:
name: MultiStepDecay
epoch_milestones: [237360, 356040]
lr_generator: 2.0e-4
lr_discriminator: 2.0e-4
lr_kp_detector: 2.0e-4

reconstruction_params:
num_videos: 1000
format: '.mp4'

animate_params:
num_pairs: 50
format: '.mp4'
normalization_params:
adapt_movement_scale: False
use_relative_movement: True
use_relative_jacobian: True

visualizer_params:
kp_size: 5
draw_border: True
colormap: 'gist_rainbow'

log_config:
interval: 10
visiual_interval: 10

validate:
interval: 30000
save_img: true

snapshot_config:
interval: 1

optimizer:
name: Adam

export_model:

  • {}
@shiyuleixia shiyuleixia changed the title 关于重建损失 关于First Order Motion 模型的重建损失 Nov 10, 2021
@shiyuleixia shiyuleixia changed the title 关于First Order Motion 模型的重建损失 关于压缩版First Order Motion 模型的重建损失 Nov 10, 2021
@jerrywgz
Copy link
Collaborator

您好,请问问题还是否需要解决,目前相关图像生成能力集成在PaddleMIX中,https://github.com/PaddlePaddle/PaddleMIX/tree/develop 可以在这个repo下提出您的需求

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants