We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
我按照Doc中的方法,基于vox_mobile.pdparams 的预训练模型,并把mode改成了both进行迁移学习,使用的是经过预处理的voxceleb1的数据集,但是无论我怎么训练重建损失都没办法收敛到0.015这么小,我只能训练到0.04以上,所以想请教下如何更近一步减小reconstruction loss,而且除了验证的指标,在训练期间的其它损失指标也都很不稳定 下面是我的配置,和repository里提供的是一样的: epochs: 100 output_dir: output_dir
dataset: train: name: FirstOrderDataset batch_size: 8 num_workers: 4 use_shared_memory: False phase: train #dataroot: data/first_order/Voxceleb/ dataroot: /data/yyking/video-preprocessing/vox-png frame_shape: [256, 256, 3] id_sampling: True pairs_list: None time_flip: True num_repeats: 75 create_frames_folder: False transforms: - name: PairedRandomHorizontalFlip prob: 0.5 keys: [image, image] - name: PairedColorJitter brightness: 0.1 contrast: 0.1 saturation: 0.1 hue: 0.1 keys: [image, image] test: name: FirstOrderDataset dataroot: /data/yyking/video-preprocessing/vox-png phase: test batch_size: 1 num_workers: 1 time_flip: False id_sampling: False create_frames_folder: False frame_shape: [ 256, 256, 3 ]
model: name: FirstOrderModelMobile mode: both # should be kp_detector, generator, both kp_weight_path: /home/cmcm/jaccob/first-order-model/vox_mobile.pdparams gen_weight_path: /home/cmcm/jaccob/first-order-model/vox_mobile.pdparams common_params: num_kp: 10 num_channels: 3 estimate_jacobian: True generator: name: FirstOrderGenerator kp_detector_cfg: temperature: 0.1 block_expansion: 32 max_features: 256 scale_factor: 0.25 num_blocks: 5 mobile_net: True generator_cfg: block_expansion: 32 max_features: 256 num_down_blocks: 2 num_bottleneck_blocks: 6 estimate_occlusion_map: True dense_motion_params: block_expansion: 32 max_features: 256 num_blocks: 5 scale_factor: 0.25 mobile_net: True generator_ori: name: FirstOrderGenerator kp_detector_cfg: temperature: 0.1 block_expansion: 32 max_features: 1024 scale_factor: 0.25 num_blocks: 5 generator_cfg: block_expansion: 64 max_features: 512 num_down_blocks: 2 num_bottleneck_blocks: 6 estimate_occlusion_map: True dense_motion_params: block_expansion: 64 max_features: 1024 num_blocks: 5 scale_factor: 0.25 discriminator: name: FirstOrderDiscriminator discriminator_cfg: scales: [1] block_expansion: 32 max_features: 512 num_blocks: 4 sn: True train_params: num_epochs: 100 scales: [1, 0.5, 0.25, 0.125] checkpoint_freq: 50 transform_params: sigma_affine: 0.05 sigma_tps: 0.005 points_tps: 5 loss_weights: generator_gan: 1 discriminator_gan: 1 feature_matching: [10, 10, 10, 10] perceptual: [10, 10, 10, 10, 10] equivariance_value: 10 equivariance_jacobian: 10
lr_scheduler: name: MultiStepDecay epoch_milestones: [237360, 356040] lr_generator: 2.0e-4 lr_discriminator: 2.0e-4 lr_kp_detector: 2.0e-4
reconstruction_params: num_videos: 1000 format: '.mp4'
animate_params: num_pairs: 50 format: '.mp4' normalization_params: adapt_movement_scale: False use_relative_movement: True use_relative_jacobian: True
visualizer_params: kp_size: 5 draw_border: True colormap: 'gist_rainbow'
log_config: interval: 10 visiual_interval: 10
validate: interval: 30000 save_img: true
snapshot_config: interval: 1
optimizer: name: Adam
export_model:
The text was updated successfully, but these errors were encountered:
您好,请问问题还是否需要解决,目前相关图像生成能力集成在PaddleMIX中,https://github.com/PaddlePaddle/PaddleMIX/tree/develop 可以在这个repo下提出您的需求
Sorry, something went wrong.
lzzyzlbb
jerrywgz
No branches or pull requests
我按照Doc中的方法,基于vox_mobile.pdparams 的预训练模型,并把mode改成了both进行迁移学习,使用的是经过预处理的voxceleb1的数据集,但是无论我怎么训练重建损失都没办法收敛到0.015这么小,我只能训练到0.04以上,所以想请教下如何更近一步减小reconstruction loss,而且除了验证的指标,在训练期间的其它损失指标也都很不稳定
![image](https://user-images.githubusercontent.com/15072820/141072776-1bb01dfb-7355-4bdd-adaa-43d78d095549.png)
下面是我的配置,和repository里提供的是一样的:
epochs: 100
output_dir: output_dir
dataset:
train:
name: FirstOrderDataset
batch_size: 8
num_workers: 4
use_shared_memory: False
phase: train
#dataroot: data/first_order/Voxceleb/
dataroot: /data/yyking/video-preprocessing/vox-png
frame_shape: [256, 256, 3]
id_sampling: True
pairs_list: None
time_flip: True
num_repeats: 75
create_frames_folder: False
transforms:
- name: PairedRandomHorizontalFlip
prob: 0.5
keys: [image, image]
- name: PairedColorJitter
brightness: 0.1
contrast: 0.1
saturation: 0.1
hue: 0.1
keys: [image, image]
test:
name: FirstOrderDataset
dataroot: /data/yyking/video-preprocessing/vox-png
phase: test
batch_size: 1
num_workers: 1
time_flip: False
id_sampling: False
create_frames_folder: False
frame_shape: [ 256, 256, 3 ]
model:
name: FirstOrderModelMobile
mode: both # should be kp_detector, generator, both
kp_weight_path: /home/cmcm/jaccob/first-order-model/vox_mobile.pdparams
gen_weight_path: /home/cmcm/jaccob/first-order-model/vox_mobile.pdparams
common_params:
num_kp: 10
num_channels: 3
estimate_jacobian: True
generator:
name: FirstOrderGenerator
kp_detector_cfg:
temperature: 0.1
block_expansion: 32
max_features: 256
scale_factor: 0.25
num_blocks: 5
mobile_net: True
generator_cfg:
block_expansion: 32
max_features: 256
num_down_blocks: 2
num_bottleneck_blocks: 6
estimate_occlusion_map: True
dense_motion_params:
block_expansion: 32
max_features: 256
num_blocks: 5
scale_factor: 0.25
mobile_net: True
generator_ori:
name: FirstOrderGenerator
kp_detector_cfg:
temperature: 0.1
block_expansion: 32
max_features: 1024
scale_factor: 0.25
num_blocks: 5
generator_cfg:
block_expansion: 64
max_features: 512
num_down_blocks: 2
num_bottleneck_blocks: 6
estimate_occlusion_map: True
dense_motion_params:
block_expansion: 64
max_features: 1024
num_blocks: 5
scale_factor: 0.25
discriminator:
name: FirstOrderDiscriminator
discriminator_cfg:
scales: [1]
block_expansion: 32
max_features: 512
num_blocks: 4
sn: True
train_params:
num_epochs: 100
scales: [1, 0.5, 0.25, 0.125]
checkpoint_freq: 50
transform_params:
sigma_affine: 0.05
sigma_tps: 0.005
points_tps: 5
loss_weights:
generator_gan: 1
discriminator_gan: 1
feature_matching: [10, 10, 10, 10]
perceptual: [10, 10, 10, 10, 10]
equivariance_value: 10
equivariance_jacobian: 10
lr_scheduler:
name: MultiStepDecay
epoch_milestones: [237360, 356040]
lr_generator: 2.0e-4
lr_discriminator: 2.0e-4
lr_kp_detector: 2.0e-4
reconstruction_params:
num_videos: 1000
format: '.mp4'
animate_params:
num_pairs: 50
format: '.mp4'
normalization_params:
adapt_movement_scale: False
use_relative_movement: True
use_relative_jacobian: True
visualizer_params:
kp_size: 5
draw_border: True
colormap: 'gist_rainbow'
log_config:
interval: 10
visiual_interval: 10
validate:
interval: 30000
save_img: true
snapshot_config:
interval: 1
optimizer:
name: Adam
export_model:
The text was updated successfully, but these errors were encountered: