-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
435 lines (386 loc) · 16.8 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
# Python imports
import copy
import re
import sympy as sy
# BlockOps import
from .graph import PintGraph
from .taskpool import TaskPool
from .taskPool2 import TasksPool
class Generator:
def __init__(self, k, checks=2):
self.k = k
self.mode = 0
self.his = []
self.checks = checks
self.generater = ''
self.translate = {}
def check(self, expr, n):
expr_str = f'{expr}'
unknowns = list(set(re.findall(re.compile('u_\d+\^\d+'), expr_str)))
tmpWildcard = {}
for i in range(len(unknowns)):
tmp_split = re.split('_|\^', unknowns[i])
iteration = int(tmp_split[2])
block = int(tmp_split[1])
tmp_block = f'n-{n - int(block)}' if n - int(block) != 0 else 'n'
tmp_iter = f'k-{self.k - iteration}' if self.k - iteration != 0 else f'k'
tmp_str = f'u_{tmp_block}^{tmp_iter}'
expr_str = expr_str.replace(unknowns[i], tmp_str)
tmpWildcard[f'x{i}'] = unknowns[i].replace('^', '\^')
self.translate[f'x{i}'] = [n - int(block), self.k - iteration]
self.his.append(expr_str)
if len(self.his) >= self.checks:
if len(set(self.his[-self.checks:])) == 1:
self.mode = 1
self.generater = expr
for key, val in tmpWildcard.items():
self.generater = self.generater.replace(lambda expr: re.match(val, str(expr)),
lambda expr: sy.Symbol(key, commutative=False))
def generatingExpr(self, n):
tmp = self.generater
for key, val in self.translate.items():
tmp = tmp.replace(lambda expr: re.match(key, str(expr)),
lambda expr: sy.symbols(f'u_{n - val[0]}^{self.k - val[1]}', commutative=False))
return tmp
Add = sy.core.add.Add
Mul = sy.core.mul.Mul
Pow = sy.core.power.Pow
Symbol = sy.core.symbol.Symbol
def getLeadingTerm(expr: Mul):
"""Decompose a multiplication into its leading term and the rest"""
try:
float(expr.args[0])
# Leading term is a scalar
if len(expr.args) == 2:
# Just multiplication
leading, rest = expr.args
else:
# Minus of several multiplicated terms
leading = expr.args[1]
rest = Mul(expr.args[0], *expr.args[2:])
except TypeError:
# Leading term is a operator
leading = expr.args[0]
rest = Mul(*expr.args[1:])
# if expr.args[0] != -1:
# # Non-negative term
# leading = expr.args[0]
# rest = Mul(*expr.args[1:])
# else:
# # Negative term with leading -1
# if len(expr.args) == 2:
# # Just minus one term
# leading, rest = expr.args
# else:
# # Minus of several multiplicated terms
# leading = expr.args[1]
# rest = Mul(-1, *expr.args[2:])
return leading, rest
def pow_to_mul(expr):
"""
Convert integer powers in an expression to Muls, like a**2 => a*a.
"""
pows = list(expr.atoms(Pow))
if any(not e.is_Integer for b, e in (i.as_base_exp() for i in pows)):
raise ValueError("A power contains a non-integer exponent")
repl = zip(pows, (Mul(*[b]*e,evaluate=False) for b,e in (i.as_base_exp() for i in pows)))
return expr.subs(repl)
def getFactorizedRule(rule, expand=True):
dico = decomposeAddition(rule, {})
if expand:
expandTree(dico)
return dico
def expandPowers(leading, rest):
leadingMul = pow_to_mul(leading)
newLeading, newRest = getLeadingTerm(leadingMul)
return newLeading, newRest*rest
def decomposeAddition(expr, dico: dict, expand=True):
"""Decompose an addition into a dictionnary with leading terms as key"""
if type(expr) == sy.Mul:
term = expr
leading, rest = getLeadingTerm(term)
if type(leading) == Pow and int(leading.exp) > 1:
leading, rest = expandPowers(leading, rest)
try:
dico[leading] += rest
except KeyError:
dico[leading] = rest
elif type(expr) == sy.Add:
for term in expr.args:
if type(term) == Symbol:
dico[term] = 1
elif type(term) == Mul:
leading, rest = getLeadingTerm(term)
if type(leading) == Pow and int(leading.exp) > 1:
leading, rest = expandPowers(leading, rest)
try:
dico[leading] += rest
except KeyError:
dico[leading] = rest
else:
raise ValueError('got neither Symbol nor Mul')
elif type(expr) == Symbol:
dico[expr] = 1
else:
raise Exception(f'Unknown expression type {type(expr)}')
return dico
def expandTree(dico: dict):
"""Expand an operation tree stored into a dictionnary"""
for leading, rest in dico.items():
if rest == 1 or type(rest) == Symbol:
continue
if type(rest) == Mul:
l, r = getLeadingTerm(rest)
if type(l) == Pow and int(l.exp) > 1:
l, r = expandPowers(l, r)
if type(r) == Symbol:
dico[leading] = {l: r}
elif type(rest) == Mul:
subDico = {l: r}
expandTree(subDico)
dico[leading] = subDico
elif type(rest) == Add:
subDico = decomposeAddition(rest, {})
expandTree(subDico)
dico[leading] = subDico
else:
raise ValueError('got neither Add nor Mul')
def printFacto(dico: dict, tab=0):
indent = " " * 3 * tab + "(+)"
for key, val in dico.items():
if type(val) == dict:
print(f'{indent} {key} (x)')
printFacto(val, tab + 1)
else:
print(f'{indent} {key} (x) {val}')
class PintRun:
def __init__(self, blockIteration, nBlocks, kMax, optimizeSerialPool=False):
self.blockIteration = blockIteration
self.nBlocks = nBlocks
self.taskPool = TaskPool()
self.taskPool2 = TasksPool()
self.kMax = kMax
self.pintGraph = PintGraph(nBlocks, max(self.kMax))
self.null = 0 * sy.symbols('null', commutative=False)
self.approxToComputation = {}
self.computationToApprox = {}
self.equBlockCoeff = {}
self.subtasks = {}
self.tasks = {}
self.localsave = {}
self.generator = [Generator(i) for i in range(max(kMax) + 1)]
self.taskPool.addTask(operation=self.null,
result=self.createSymbolForUnk(0, 0),
cost=0)
self.taskPool2.addTask(ope=sy.core.numbers.Zero(),
inp=sy.core.numbers.Zero(),
dep=None,
n=0,
k=0,
result=self.createSymbolForUnk(0, 0),
blockIters=self.blockIteration.blockOps
)
self.createExpressions()
self.taskPool2.removeZeroTasks()
self.taskPool2.setCosts()
if optimizeSerialPool:
self.taskPool.optimizeSerialPool()
self.pintGraph.generateGraphFromPool(pool=self.taskPool2)
def getMinimalRuntime(self):
return self.pintGraph.longestPath()
def plotGraph(self, figName=None, figSize=(6.4, 4.8)):
# return self.pintGraph.plotGraph2(figName, figSize=figSize)
return self.pintGraph.plotGraph(figName, figSize=figSize)
def createSymbolForUnk(self, n, k):
# TODO: Workaround to make FCF work. But maybe this is not the way to go
if n < 0:
n = 0
if k > self.kMax[n]:
return sy.symbols(f'u_{n}^{self.kMax[n]}', commutative=False)
else:
return sy.symbols(f'u_{n}^{k}', commutative=False)
def extractTasksFromRule(self, op, res):
node = op
tName = NameGenerator(res)
localTaskPool = {}
def getTasks(node):
if node.func in [sy.Add, sy.Mul]:
name = tName.get()
# Get operation and dependencies
if node.func == sy.Add:
op = '+'
elif node.func == sy.Mul:
op = 'o'
ta = [getTasks(n) for n in node.args]
# Eventually expand [.., op**n, ..] into [.., op, .., op, ..]
# ONLY for n > 0 !
for i, sym in enumerate(ta):
if isinstance(sym, sy.Pow) and sym.exp > 0:
ta[i:i + 1] = [sym.base for item in range(sym.exp)]
# Some fix to merge the -1 into one given tasks
if isinstance(ta[0], sy.core.numbers.NegativeOne):
merged = ta[1]
ta = [merged] + ta[2:]
if op == 'o':
cou = 1
tmp = sy.symbols(name.name + f'_{cou}', commutative=False)
while len(ta) > 2:
localTaskPool[tmp] = {'op': op, 'task': ta[-2:]}
ta = ta[:-2]
ta.append(tmp)
cou += 1
tmp = sy.symbols(name.name + f'_{cou}', commutative=False)
# Store task in dictionary
localTaskPool[name] = {'op': op, 'task': ta}
else:
name = node
return name
getTasks(node)
return localTaskPool
def taskGenerator(self, rule, res):
localTaskPool = self.extractTasksFromRule(op=rule, res=res)
for key, value in localTaskPool.items():
# Rebuild task
if value['task'][0] in self.localsave:
value['task'][0] = self.localsave[value['task'][0]]
expr = value['task'][0]
for i in range(1, len(value['task'])):
if value['task'][i] in self.localsave:
value['task'][i] = self.localsave[value['task'][i]]
if value['op'] == 'o':
expr *= value['task'][i]
elif value['op'] == '+':
expr += value['task'][i]
if expr in self.tasks:
self.localsave[key] = self.tasks[expr]
else:
if isinstance(expr, sy.Add) or isinstance(expr, sy.Mul):
self.tasks[expr] = key
cost = 0
for atoms in expr.atoms():
if hasattr(atoms, "name") and atoms.name in self.blockIteration.blockOps:
cost = self.blockIteration.blockOps[atoms.name].cost
self.taskPool.addTask(operation=expr, result=key, cost=cost)
else:
self.localsave[key] = expr
def createIterationRule(self, n, k):
iterationRule = self.null
for (nMod, kMod), op in self.blockIteration.coeffs:
iterationRule += op.symbol * self.createSymbolForUnk(n=n + nMod - 1, k=k + kMod - 1)
iterationRule = iterationRule.simplify().expand()
return iterationRule
def createPredictionRule(self, n):
pred = self.blockIteration.predictor
predictorRule = pred.symbol * self.createSymbolForUnk(n=n - 1, k=0)
predictorRule = predictorRule.simplify().expand()
return predictorRule
def substitute_and_simplify(self, expr, iter):
ruleSimplifaction = len(self.blockIteration.rules) > 0
expr = expr.subs({key: self.approxToComputation[key] for key in
[atoms for atoms in expr.atoms() if str(atoms).startswith('u')] if
key in self.approxToComputation})
if ruleSimplifaction:
expr = expr.subs(self.blockIteration.rules)
# The saver way is to use the first if case, where all entries of computationToApprox are used.
# However, this is also quite expensive. Therefore, we only use this strategy
# for the first two iterations. For these iterations it is necessary, since everything can go
# back to the initial condition. Afterwards, we use a reduced version of computationToApprox
# where we only consider entries that contain an u_x^y present in the expr.
if iter in [0, 1]:
for key, value in self.computationToApprox.items():
expr = expr.subs({key: self.computationToApprox[key]})
else:
reducedCompuToApprox = {item2[1]: self.computationToApprox[item2[1]] for item2 in
[[key.atoms(), key] for key, value in self.computationToApprox.items()] if
set(item2[0]).intersection(
set([atoms for atoms in expr.atoms() if str(atoms).startswith('u')]))}
for key, value in reducedCompuToApprox.items():
expr = expr.subs({key: value})
tmp = expr
if ruleSimplifaction:
tmp = tmp.subs(self.blockIteration.rules)
if len(self.equBlockCoeff) > 0:
expr = tmp.subs(self.equBlockCoeff)
if tmp != expr:
expr = expr.subs(self.computationToApprox)
if ruleSimplifaction:
expr = expr.subs(self.blockIteration.rules)
else:
expr = tmp
return expr
def taskGenerator2(self, rule, res, n, k):
if type(rule) == sy.Symbol:
a = re.split('_|\^', res.name)
b = re.split('_|\^', rule.name)
if a[1] != b[1]:
ruleDict = getFactorizedRule(rule=rule)
self.taskPool2.createTasks(dico=ruleDict, n=n, k=k, res=res, blockIters=self.blockIteration.blockOps)
self.taskPool2.save = []
else:
ruleDict = getFactorizedRule(rule=rule)
self.taskPool2.createTasks(dico=ruleDict, n=n, k=k, res=res, blockIters=self.blockIteration.blockOps)
self.taskPool2.save = []
def createExpressions(self):
for n in range(self.nBlocks):
if self.blockIteration.predictor is None:
self.taskPool.addTask(operation=self.null,
result=self.createSymbolForUnk(n + 1, 0),
cost=0)
self.taskPool2.addTask(ope=sy.core.numbers.Zero(),
inp=sy.core.numbers.Zero(),
dep=None,
n=n+1,
k=0,
result=self.createSymbolForUnk(n+1, 0),
blockIters=self.blockIteration.blockOps
)
else:
res = self.createSymbolForUnk(n=n + 1, k=0)
if self.generator[0].mode == 0:
rule = self.substitute_and_simplify(self.createPredictionRule(n=n + 1), 0)
self.generator[0].check(rule, n + 1)
else:
rule = self.generator[0].generatingExpr(n=n + 1)
#self.taskGenerator(rule=rule, res=res)
self.taskGenerator2(rule=rule, res=res, n=n + 1, k=0)
if len(rule.args) > 0:
self.approxToComputation[res] = rule
self.computationToApprox[rule] = res
else:
self.equBlockCoeff[res] = rule
for k in range(max(self.kMax)):
for n in range(self.nBlocks):
if k < self.kMax[n + 1]:
res = self.createSymbolForUnk(n=n + 1, k=k + 1)
tmp = self.createIterationRule(n=n + 1, k=k + 1)
if self.generator[k + 1].mode == 0:
rule = self.substitute_and_simplify(self.createIterationRule(n=n + 1, k=k + 1), k + 1)
self.generator[k + 1].check(rule, n + 1)
else:
rule = self.generator[k + 1].generatingExpr(n=n + 1)
#self.taskGenerator(rule=rule, res=res)
self.taskGenerator2(rule=rule, res=res, n=n + 1, k=k + 1)
if len(rule.args) > 0:
self.computationToApprox[rule] = res
self.approxToComputation[res] = rule
else:
self.equBlockCoeff[res] = rule
class NameGenerator(object):
"""DOCTODO"""
def __init__(self, prefix):
"""
DOCTODO
Parameters
----------
prefix : TYPE
DESCRIPTION.
"""
self.prefix = prefix
self.counter = 0
def get(self):
if self.counter > 0:
name = sy.symbols(f'{self.prefix}_{self.counter}', commutative=False)
else:
name = sy.symbols(f'{self.prefix}', commutative=False)
self.counter += 1
return name