-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsympy_based_simplification.py
179 lines (154 loc) · 5.86 KB
/
sympy_based_simplification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import sympy as sy
from PintGraph import PintGraph
f, g = sy.symbols('f,g', commutative=False)
null = f * 0
class NameGenerator(object):
def __init__(self, prefix):
self.prefix = prefix
self.counter = 0
def get(self):
name = f'{"u" if self.counter == 0 else "v"}_{self.counter}'
self.counter += 1
return name
class SympyBasedApproach(PintGraph):
def __init__(self, cost_fine: float, cost_coarse: float, cost_copy: float = 0, cost_correction: float = 0,
simplify_graph = True,*args: object, **kwargs: object) -> None:
"""
Constructor
:param cost_fine: Cost of the fine propagator
:param cost_coarse: Cost of the coarse propagator
:param cost_copy: Cost of a copy operation
:param cost_correction: Cost of a correction
:param args:
:param kwargs:
"""
super().__init__(*args, **kwargs)
self.cost_coarse = cost_coarse
self.cost_fine = cost_fine
self.cost_correction = cost_correction
self.cost_copy = cost_copy
self.sim_graph = simplify_graph
self.blockOperators = [
{"dep": (-1, -1),
"sym": f,
},
{"dep": (-1, -1),
"sym": -g,
},
{"dep": (-1, 0),
"sym": g,
}]
self.dico = {}
def node(self, n, k):
if k > self.iterations[n]:
return sy.symbols(f'u_{n}^{self.iterations[n]}', commutative=False)
else:
return sy.symbols(f'u_{n}^{k}', commutative=False)
def extractTasks(self, node):
tName = NameGenerator('v')
tasks = {}
def getTasks(node):
if node.func in [sy.Add, sy.Mul]:
name = tName.get()
# Get operation and dependencies
if node.func == sy.Add:
op = '+'
elif node.func == sy.Mul:
op = 'o'
dep = [getTasks(n) for n in node.args]
# Some fix to merge the -1 into one given tasks
if isinstance(dep[0], sy.core.numbers.NegativeOne):
merged = dep[0] * dep[1]
dep = [merged] + dep[2:]
# Store task in dictionary
tasks[name] = {'op': op, 'dep': dep}
else:
name = node
return name
getTasks(node)
return tasks
def buildNextNode(self, n, k):
newSol = null
for op in self.blockOperators:
nMod, kMod = op['dep']
newSol += op['sym'] * self.node(n + 1 + nMod, k + 1 + kMod)
newSol.simplify()
self.dico[n + 1, k + 1] = newSol
def taskToGraph(self, tasks, n, k):
for key, value in tasks.items():
if key.split('_')[-1] == '0':
val = f'u_{n}^{k}'
else:
val = key + f'_{n}^{k}'
dep = []
oper = 'C'
for item in value['dep']:
if not isinstance(item, sy.Symbol):
if isinstance(item, sy.Expr):
if g not in item.free_symbols and f not in item.free_symbols:
dep.append(item)
else:
if g in item.free_symbols:
oper = 'G'
else:
oper = 'F'
else:
if isinstance(item, str):
if item.startswith('v'):
tmp_task = item + f'_{n}^{k}'
dep.append(tmp_task)
else:
dep.append(item)
else:
if g not in item.free_symbols and f not in item.free_symbols:
dep.append(item)
else:
if g in item.free_symbols:
oper = 'G'
else:
oper = 'F'
if val.startswith('v'):
if val.split('_')[1] == '1':
pos = (n-.4, k)
elif val.split('_')[1] == '2':
pos = (n-.4, k+.5)
elif val.split('_')[1] == '3':
pos = (n, k)
else:
pos = (n, k+.5)
self.add_node(op=oper,
predecessors=dep,
set_values=[val],
cost=1,
point=n,
pos=pos)
def build_graph(self):
for k in range(max(self.iterations)):
for n in range(self.nt):
if k <= self.iterations[n]:
self.taskToGraph(self.extractTasks(self.dico[n, k]), n, k)
def boundary_condition(self):
self.dico[0, 0] = self.node(0, 0)
for n in range(self.nt):
self.dico[n + 1, 0] = g * self.node(n, 0)
for k in range(max(self.iterations)):
for n in range(self.nt):
if k <= self.iterations[n]:
self.buildNextNode(n, k)
self.add_node(op='C',
predecessors=['u_0'],
set_values=['u_0^0'],
cost=0,
point=0,
pos=(0, .5))
def compute(self):
self.boundary_condition()
self.build_graph()
if self.sim_graph:
self.simplify_graph()
parareal_model = SympyBasedApproach(cost_fine=4, cost_coarse=1, nt=4, iters=[0, 1, 2, 3], conv_crit=1, simplify_graph=False)
parareal_model.compute()
parareal_model.plot_dag()
parareal_model = SympyBasedApproach(cost_fine=4, cost_coarse=1, nt=4, iters=[0, 1, 2, 3], conv_crit=1, simplify_graph=True)
parareal_model.compute()
parareal_model.plot_dag()