-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3d_track_code_template.py
64 lines (48 loc) · 1.97 KB
/
3d_track_code_template.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import open3d as o3d
import numpy as np
# Function to process LiDAR point cloud data
def process_point_cloud(pcd):
# Preprocess point cloud (e.g., remove ground plane, filter noise)
# Your preprocessing steps here
# Perform object detection and tracking
# Your object detection and tracking algorithm here
# Return tracked objects
return tracked_objects
# Function to visualize LiDAR point cloud and tracked objects
def visualize_point_cloud(pcd, tracked_objects):
# Create visualizer object
vis = o3d.visualization.Visualizer()
vis.create_window()
# Add point cloud to the visualizer
vis.add_geometry(pcd)
# Add tracked objects to the visualizer
for obj in tracked_objects:
# Create bounding box around the object
bbox = o3d.geometry.OrientedBoundingBox(center=obj['center'],
R=obj['rotation'],
extent=obj['extent'])
# Create wireframe box
mesh_box = o3d.geometry.LineSet.create_from_oriented_bounding_box(bbox)
mesh_box.paint_uniform_color(obj['color'])
# Add wireframe box to the visualizer
vis.add_geometry(mesh_box)
# Run visualizer
vis.run()
vis.destroy_window()
# Main function
def main():
# Create LiDAR sensor object or connect to a real sensor
# Your LiDAR sensor initialization code here
while True:
# Get LiDAR point cloud data
point_cloud = get_lidar_point_cloud()
# Convert point cloud to Open3D format
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(point_cloud)
# Process point cloud and obtain tracked objects
tracked_objects = process_point_cloud(pcd)
# Visualize point cloud and tracked objects
visualize_point_cloud(pcd, tracked_objects)
# Entry point
if __name__ == '__main__':
main()