-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkitt_detection_vis.py
286 lines (178 loc) · 9.1 KB
/
kitt_detection_vis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import numpy as np
import open3d as o3d
import os
import struct
import time
velo_path = "/home/parvez_alam/Data/Kitti/Object/data_object_velodyne/training/velodyne"
label_path = "/home/parvez_alam/Data/Kitti/Object/data_object_label_2/training/label_2"
calib_path = "/home/parvez_alam/Data/Kitti/Object/data_object_calib/training/calib"
global edges
edges = np.array([[0, 1], [1,2], [2,3], [3,0],
[4,5], [5,6], [6, 7], [7,4],
[0,4], [1,5], [2,6], [3, 7]])
class NonBlockVisualizer:
def __init__(self, point_size=2, background_color=[0, 0, 0]):
self.__visualizer = o3d.visualization.Visualizer()
self.__visualizer.create_window()
opt = self.__visualizer.get_render_option()
opt.background_color = np.asarray(background_color)
opt = self.__visualizer.get_render_option()
opt.point_size = point_size
self.__pcd_vis = o3d.geometry.PointCloud()
self.__initialized = False
self.total_bboxes = []
for i in range(100):
self.total_bboxes.append(o3d.geometry.LineSet())
self.count_bb = 0
def update_renderer(self, pcd, bboxes , wait_time=0):
self.__pcd_vis.points = pcd.points
self.__pcd_vis.colors = pcd.colors
if not self.__initialized:
self.__initialized = True
self.__visualizer.add_geometry(self.__pcd_vis)
for dim_of_bb in bboxes:
vertices = dim_of_bb[1]
category = dim_of_bb[2]
self.total_bboxes[self.count_bb].points = o3d.utility.Vector3dVector(vertices)
self.total_bboxes[self.count_bb].lines = o3d.utility.Vector2iVector(edges)
if category == 'Car':
colors = [[1,0,0] for i in range(len(edges))]
if category== 'Van':
colors = [[0,1,0] for i in range(len(edges))]
if category == 'Truck':
colors = [[0,0,1] for i in range(len(edges))]
if category == 'Pedestrian':
colors = [[1,0.3,0.05]for i in range(len(edges))]
if category == 'Person_sitting' :
colors = [[0,1,1] for i in range(len(edges))]
if category == 'Cyclist':
colors = [[1, 0, 1] for i in range(len(edges))]
if category == 'Tram':
colors = [[0.5, 0.5, 0] for i in range(len(edges))]
if category == 'Misc':
colors = [[0,0.5, 0.5] for i in range(len(edges))]
if category == 'Person':
colors = [[0.75, 0.3, 0.5] for i in range(len(edges))]
if category == 'DontCare':
colors = [[0.5, 0, 0.3] for i in range(len(edges))]
#print("category=", category)
self.total_bboxes[self.count_bb].colors = o3d.utility.Vector3dVector(colors)
self.count_bb = self.count_bb + 1
for bbox in self.total_bboxes:
self.__visualizer.add_geometry(bbox)
else:
self.__visualizer.update_geometry(self.__pcd_vis)
for i in range(self.count_bb):
self.total_bboxes[i].points = o3d.utility.Vector3dVector([])
self.total_bboxes[i].lines = o3d.utility.Vector2iVector([])
self.total_bboxes[i].colors = o3d.utility.Vector3dVector([])
self.count_bb = 0
for dim_of_bb in bboxes:
vertices = dim_of_bb[1]
category = dim_of_bb[2]
self.total_bboxes[self.count_bb].points = o3d.utility.Vector3dVector(vertices)
self.total_bboxes[self.count_bb].lines = o3d.utility.Vector2iVector(edges)
if category == 'Car':
colors = [[1,0,0] for i in range(len(edges))]
if category == 'Van':
colors = [[0,1,0] for i in range(len(edges))]
if category == 'Truck':
colors = [[0,0,1] for i in range(len(edges))]
if category == 'Pedestrian':
colors = [[1,0.3,0.05]for i in range(len(edges))]
if category == 'Person_sitting' :
colors = [[0,1,1] for i in range(len(edges))]
if category == 'Cyclist':
colors = [[1, 0, 1] for i in range(len(edges))]
if category == 'Tram':
colors = [[0.5, 0.5, 0] for i in range(len(edges))]
if category == 'Misc':
colors = [[0,0.5, 0.5] for i in range(len(edges))]
if category == 'Person':
colors = [[0.75, 0.3, 0.5] for i in range(len(edges))]
if category == 'DontCare':
colors = [[0.5, 0, 0.3] for i in range(len(edges))]
#print("catyegory=",category)
self.total_bboxes[self.count_bb].colors = o3d.utility.Vector3dVector(colors)
self.count_bb = self.count_bb + 1
for bbox in self.total_bboxes:
self.__visualizer.update_geometry(bbox)
self.__visualizer.poll_events()
self.__visualizer.update_renderer()
def load_kitti_calib(calib_file):
with open(calib_file) as f_calib:
lines = f_calib.readlines()
P0 = np.array(lines[0].strip('\n').split()[1:], dtype=np.float32)
P1 = np.array(lines[1].strip('\n').split()[1:], dtype=np.float32)
P2 = np.array(lines[2].strip('\n').split()[1:], dtype=np.float32)
P3 = np.array(lines[3].strip('\n').split()[1:], dtype=np.float32)
R0_rect = np.array(lines[4].strip('\n').split()[1:], dtype=np.float32)
Tr_velo_to_cam = np.array(lines[5].strip('\n').split()[1:], dtype=np.float32)
Tr_imu_to_velo = np.array(lines[6].strip('\n').split()[1:], dtype=np.float32)
return {'P0': P0, 'P1':P1, 'P2':P2, 'P3':P3, 'R0_rect': R0_rect, 'Tr_velo_to_cam': Tr_velo_to_cam.reshape(3,4), 'Tr_imu_to_velo': Tr_imu_to_velo}
def camera_coordinate_to_point_cloud(box3d, Tr):
def project_cam2velo(cam, Tr):
T = np.zeros([4,4], dtype=np.float32)
T[:3, :] = Tr
T[3, 3] = 1
T_inv = np.linalg.inv(T)
lidar_loc_ = np.dot(T_inv, cam)
lidar_loc = lidar_loc_[:3]
return lidar_loc.reshape(1,3)
def ry_to_rz(ry):
angle = -ry - np.pi / 2
if angle >= np.pi:
angle -= np.pi
if angle < -np.pi:
angle = 2 * np.pi + angle
return angle
h,w,l,tx,ty,tz,ry = [float(i) for i in box3d]
cam = np.ones([4,1])
cam[0] = tx
cam[1] = ty
cam[2] = tz
t_lidar = project_cam2velo(cam, Tr)
Box = np.array([[-l/2, -l/2, l/2, l/2, -l/2, -l/2, l/2, l/2],
[w/2, -w/2, -w/2, w/2, w/2, -w/2, -w/2, w/2],
[0, 0, 0, 0, h, h, h, h]])
rz = ry_to_rz(ry)
rotMat = np.array([[np.cos(rz), -np.sin(rz), 0.0],
[np.sin(rz), np.cos(rz), 0.0],
[0.0, 0.0, 1.0]])
velo_box = np.dot(rotMat, Box)
cornerPosInVelo = velo_box + np.tile(t_lidar, (8, 1)).T
box3d_corner = cornerPosInVelo.transpose()
return t_lidar, box3d_corner
obj = NonBlockVisualizer()
velo_frames = sorted(os.listdir(velo_path))
label_frames = sorted(os.listdir(label_path))
calib_frame = sorted(os.listdir(calib_path))
for i in range(len(velo_frames)):
velo_frame_path = os.path.join(velo_path, velo_frames[i])
label_frame_path = os.path.join(label_path, label_frames[i])
calib_frame_path = os.path.join(calib_path, calib_frame[i])
calibration = load_kitti_calib(calib_frame_path)
bboxes = []
with open(label_frame_path) as f_label:
lines = f_label.readlines()
for line in lines:
line = line.strip('\n').split()
if line[0] != 'DontCare':
category = line[0]
center, box_3d_corner = camera_coordinate_to_point_cloud(line[8:15], calibration['Tr_velo_to_cam'])
center = center[0]
bboxes.append([center, box_3d_corner, category])
# read the pcd data
size_float = 4
list_pcd = []
with open(velo_frame_path, "rb") as f:
byte = f.read(size_float * 4)
while byte:
x, y, z, intensity = struct.unpack("ffff", byte)
list_pcd.append([x,y,z])
byte = f.read(size_float * 4)
points = np.asarray(list_pcd)
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points)
obj.update_renderer(pcd, bboxes)
time.sleep(1)