-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpresentation.py
executable file
·308 lines (269 loc) · 12.8 KB
/
presentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# -*- coding: utf-8 -*-
"""
Created on Tue Aug 6 19:57:43 2019
@author: PascPeli
This is a Set of utility functions used for the presentation and visualisation
of the results collected during the experiments of "RL Policy Tuning"
"""
import os
import pickle
import imageio
import numpy as np
import scipy.stats
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
matplotlib.rcParams['animation.embed_limit'] = 50 # MB
path = os.path.join(os.getcwd(),'data','test')
reward_modes = ['default', 'penalty_once', 'penalty']
game_modes = ['straight','diagonal', 'diagonal_slow', 'random']
def load_results(folder='test'):
'''
Loads and returns a dict that was previously saved during training or testing
'''
results = {}
if folder=='test':
file_path = os.path.join(os.getcwd(),'data','test','all_results_test.pickle')
elif folder=='train':
file_path = os.path.join(os.getcwd(),'data','train','all_results_train.pickle')
with open(file_path, 'rb') as handle:
results = pickle.load(handle)
return results
def plot_graphs(results, game_mode, extensive=False, statistics=True):
'''
Input :
results - dict
game_mode - str, one of 'straight','diagonal', 'diagonal_slow', 'random'
extensive - bool
statistics - bool
Output:
Returns a figure with 2 or 6 subplots (7 in case game_mode == 'random')
extensive=False:
1. Win Rate - The success rate of each agent
2. Extra Moves per Steps - The number of undesirable behaviors performed by the agent per number of steps.
extensive=True:
1. Wins - The number of successful episodes of each agent
2. Win Rate - The success rate of each agent
3. Moves - The number of Left or Right actions of each agent
4. Wall Hits - The number of Against-the-Wall actions of each agent
5. Moves per Steps - The number of Left or Right actions performed by the agent per number of steps.
6. Wall Hits pes Steps - The number of Against-the-Wall actions performed by the agent per number of steps.
7. Steps per Epoch - The number of environment steps from begining to end.Meaningful only if game_mode == 'random', otherwise a straight line.
'''
title = game_mode.title()
if extensive:
nof_graphs = 7 if game_mode == 'random' else 6
fig, axs = plt.subplots(nof_graphs, figsize=(20, 7*nof_graphs))
axs[0].set_title('Wins', color='C0'); axs[0].set_ylabel('Wins')
axs[1].set_title('Win rate ({})'.format(title), color='C0'); axs[1].set_ylabel('Win Rate')
axs[2].set_title('Moves ({})'.format(title), color='C0'); axs[2].set_ylabel('Moves')
axs[3].set_title('Wall Hits ({})'.format(title), color='C0'); axs[3].set_ylabel('Wall Hits')
axs[4].set_title('Moves per Step ({})'.format(title), color='C0'); axs[4].set_ylabel('Moves / Step')
axs[5].set_title('Wall Hits per Step ({})'.format(title), color='C0'); axs[5].set_ylabel('Wall Hits/Step')
if game_mode == 'random':
axs[6].set_title('Steps per Epoch ({})'.format(title), color='C0'); axs[6].set_ylabel('Steps')
for reward_mode in reward_modes:
axs[0].plot(results[reward_mode+'_'+game_mode][0][:,1], label=reward_mode)
axs[1].plot(results[reward_mode+'_'+game_mode][0][:,2], label=reward_mode)
axs[2].plot(results[reward_mode+'_'+game_mode][0][:,3].cumsum(), label=reward_mode)
axs[3].plot(results[reward_mode+'_'+game_mode][0][:,4].cumsum(), label=reward_mode)
axs[4].plot(results[reward_mode+'_'+game_mode][0][:,3].cumsum()/results[reward_mode+'_'+game_mode][0][:,5].cumsum(), label=reward_mode)
axs[5].plot(results[reward_mode+'_'+game_mode][0][:,4].cumsum()/results[reward_mode+'_'+game_mode][0][:,5].cumsum(), label=reward_mode)
if game_mode == 'random':
axs[6].plot(results[reward_mode+'_'+game_mode][0][:,5].cumsum()/results[reward_mode+'_'+game_mode][0][:,0], label=reward_mode)
else:
nof_graphs = 2
fig, axs = plt.subplots(nof_graphs, figsize=(20, 7*nof_graphs))
axs[0].set_title('Win rate ({})'.format(title), color='C0'); axs[0].set_ylabel('Win Rate')
axs[1].set_title('Extra Moves per Step ({})'.format(title), color='C0'); axs[1].set_ylabel('Extra Moves / Steps')
for reward_mode in reward_modes:
axs[0].plot(results[reward_mode+'_'+game_mode][0][:,2], label=reward_mode)
axs[1].plot((results[reward_mode+'_'+game_mode][0][:,3]+results[reward_mode+'_'+game_mode][0][:,4]).cumsum() / results[reward_mode+'_'+game_mode][0][:,5].cumsum(), label=reward_mode)
for i in range(nof_graphs):
axs[i].grid()
axs[i].legend()
axs[i].set_xlabel('Epochs')
if statistics:
if extensive:
fig.subplots_adjust(top=0.88)
else:
fig.subplots_adjust(top=0.70)
text=''
for reward_mode in reward_modes:
if results[reward_mode+'_'+game_mode][0].shape[1] == 7:
_, _, _, moves, wall, steps, _ = np.sum(results[reward_mode+'_'+game_mode][0], axis=0)
else:
_, _, _, moves, wall, steps, _, _, _ = np.sum(results[reward_mode+'_'+game_mode][0], axis=0)
wins = results[reward_mode+'_'+game_mode][0][-1,1]
win_rate = results[reward_mode+'_'+game_mode][0][-1,2]
mode = 'Penal_O' if reward_mode =='penalty_once' else reward_mode.title()
text += "\n%s: Wins: %d | WinRate: %.2f | Moves: %d | WallHits: %d | Steps: %d" %(mode,wins,win_rate, moves, wall, steps)
fig.suptitle('{}\n{}'.format(title,text), fontsize=30,color='b')
else:
if extensive:
fig.subplots_adjust(top=0.95)
else:
fig.subplots_adjust(top=0.90)
fig.suptitle(title, fontsize=30,color='b')
def count_uniques(data, uniques=[0,1,2]):
'''
Returns a dict with the count of unique elements of iterable object
It is particulary useful when the rows of the array are not of the same leght
'''
counts = dict( zip(uniques, np.zeros(len(uniques),int) ))
for item in data:
for i in item:
counts[i] += 1
return counts
def get_uniques(data,digits=5):
'''
'''
uniques = set()
for item in data:
for i in item:
uniques.add(round(i,digits))
return uniques
def noD_mode(data, uniques=[0,1,2]):
'''
no_Dimension_mode returns an np.array of the mode of an iterable object.
It returns the same result as scipy.stats.mode(array, axis=0)
It is particulary useful when the rows of the array are not of the same leght
'''
max_keys = []
max_values = []
i=0
while True:
cnt_err = 0
counts = dict( zip(uniques, np.zeros(len(uniques),int) ))
for item in data:
try:
counts[item[i]] += 1
except IndexError:
cnt_err += 1
pass
if cnt_err == len(data):
break
key = max(counts, key=counts.get)
value = counts[key]
max_keys.append(key)
max_values.append(value)
i += 1
return (np.array([max_keys]),np.array([max_values]))
def plot_actions_bar (results):
'''
Returns a figure with 4 bar subplots of the frequency of the actions
that the agent perfomed during training or testing
'''
fig, axs = plt.subplots(2,2,figsize=(20,10))
fig.suptitle('Actions Taken Frequency', fontsize=30,color='b')
for e, game_mode in enumerate(game_modes):
i = e // 2 # np.array([0,1,2,3])//2 -> array([0, 0, 1, 1])
j = e % 2 # np.array([0,1,2,3]) %2 -> array([0, 1, 0, 1])
for r, reward_mode in enumerate(reward_modes):
if game_mode == 'random':
act_cnt = count_uniques(np.array(results[reward_mode+'_'+game_mode][1]))
else:
unique, counts = np.unique(np.array(results[reward_mode+'_'+game_mode][1]), return_counts=True)
act_cnt = dict(zip(unique, counts))
x = np.fromiter(act_cnt.keys(), dtype=float) + 0.2 * (r-1)
axs[i, j].bar(x, act_cnt.values(), width=0.3,label=reward_mode)
axs[i, j].set_xticks([0,1,2])
axs[i, j].set_xticklabels(('left','stay','right'))
axs[i, j].title.set_text('Actions Frequency ({})'.format(game_mode.title()));
axs[i, j].grid()
axs[i, j].legend()
def plot_actions_mod (results):
'''
Returns a figure with 4 subplots of the most frequent (mode) action that the
agent perfomed at each time step
'''
fig, axs = plt.subplots(2,2,figsize=(20,10))
fig.suptitle('Actions Taken at Each Time-Step', fontsize=30,color='b')
for e, game_mode in enumerate(game_modes):
i = e // 2 # np.array([0,1,2,3])//2 -> array([0, 0, 1, 1])
j = e % 2 # np.array([0,1,2,3]) %2 -> array([0, 1, 0, 1])
for r, reward_mode in enumerate(reward_modes):
if game_mode == 'random':
data = noD_mode(results[reward_mode+'_'+game_mode][1])[0][0] - 1
else:
data = scipy.stats.mode(np.array(results[reward_mode+'_'+game_mode][1]),axis=0)[0][0] - 1
axs[i, j].plot(data, label=reward_mode)
axs[i, j].set_yticks([-1, 0, 1])
axs[i, j].set_xlabel('Steps')
axs[i, j].set_yticklabels(('left','stay','right'))
axs[i, j].title.set_text('Actions ({})'.format(game_mode.title()));
axs[i, j].grid()
axs[i, j].legend()
def gif_maker(path):
'''
Creates and stores on disk .gif files using the images created on testing
'''
path = os.path.join(os.getcwd(),'data','tests')
foldernames = []
for i in os.listdir(os.path.join(path,'images')):
foldernames.append(i)
for folder in foldernames:
filenames = []
for i in os.listdir(os.path.join(path,'images',folder)):
filenames.append(os.path.join(path,'images',folder,i))
gif_path = os.path.join(path,'gifs',folder+'.gif')
with imageio.get_writer(gif_path, mode='I') as writer:
for filename in filenames:
image = imageio.imread(filename)
writer.append_data(image)
def load_images(path):
'''
Loads and returns the images that where saved during testing
'''
images = {}
for folder in sorted(os.listdir(os.path.join(path,'images'))):
img = []
for im in sorted(os.listdir(os.path.join(path,'images',folder))):
img.append(os.path.join(path,'images',folder,im))
images[folder] = np.array(img)
return images
def animation_maker(path, save=None):
'''
Creates an matplotlib.animation object that can be saved
either in .mp4 or as a jshtml str
'''
if save:
vid_path = os.path.join(path,'videos')
if not os.path.isdir(vid_path):
os.makedirs(vid_path)
fig, axs = plt.subplots(1,3,figsize=(15,5))
fig.tight_layout()
fig.subplots_adjust(top=0.95)
images = load_images(path)
def update(frame, *fargs):
game_mode = fargs[0]
for i, reward_mode in enumerate(reward_modes):
axs[i].cla()
axs[i].set_title(reward_mode, color='b', fontsize=20)
try:
img = images[reward_mode+'_'+game_mode][frame]
except IndexError:
# in case of IndeError use the last available.
#done to keep the videos with different number of total frames
img = images[reward_mode+'_'+game_mode][len(images[reward_mode+'_'+game_mode])-1]
axs[i].imshow(plt.imread(img))
for game_mode in game_modes:
fig.suptitle(game_mode.title(), fontsize=30)
max_len = max(len(images[reward_modes[0]+'_'+game_mode]),len(images[reward_modes[1]+'_'+game_mode]),len(images[reward_modes[2]+'_'+game_mode]))
anim =FuncAnimation(fig, update, frames=range(max_len),fargs=(game_mode,), interval=100)
if save == 'jshtml':
with open(os.path.join(vid_path, game_mode+'.vidstr'), 'w') as file:
file.write(anim.to_jshtml())
elif save == 'video':
anim.save(os.path.join(vid_path, game_mode+'.mp4'))
def load_jshtml(path):
try:
vid_dict = {}
vid_path = os.path.join(path,'videos')
for game_mode in game_modes:
with open(os.path.join(vid_path, game_mode+'.vidstr')) as file:
vid_dict[game_mode] = file.read()
return vid_dict
except:
print('File not found')
return None