forked from broadinstitute/jump-profiling-recipe
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSnakefile
165 lines (131 loc) · 3.98 KB
/
Snakefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
wildcard_constraints:
pipeline=r"[_a-zA-Z.~0-9\-]*",
scenario=r"[_a-zA-Z.~0-9\-]*",
import correct
import preprocessing as pp
include: "rules/sphering.smk"
include: "rules/map.smk"
rule all:
input:
f"outputs/{config['scenario']}/reformat.done",
rule reformat:
input:
f"outputs/{config['scenario']}/{config['pipeline']}.parquet",
output:
touch("outputs/{scenario}/reformat.done"),
params:
profile_dir=lambda w: f"outputs/{w.scenario}/",
run:
correct.format_check.run_format_check(params.profile_dir)
rule write_parquet:
output:
"outputs/{scenario}/profiles.parquet",
run:
pp.io.write_parquet(
config["sources"],
config["plate_types"],
*output,
)
rule compute_norm_stats:
input:
"outputs/{scenario}/{pipeline}.parquet",
output:
"outputs/{scenario}/norm_stats/{pipeline}.parquet",
params:
use_negcon=config["use_mad_negcon"],
run:
pp.stats.compute_norm_stats(*input, *output, **params)
rule select_variant_feats:
input:
"outputs/{scenario}/{pipeline}.parquet",
"outputs/{scenario}/norm_stats/{pipeline}.parquet",
output:
"outputs/{scenario}/{pipeline}_var.parquet",
run:
pp.stats.select_variant_features(*input, *output)
rule mad_normalize:
input:
"outputs/{scenario}/{pipeline}.parquet",
"outputs/{scenario}/norm_stats/{pipeline}.parquet",
output:
"outputs/{scenario}/{pipeline}_mad.parquet",
run:
pp.normalize.mad(*input, *output)
rule INT:
input:
"outputs/{scenario}/{pipeline}.parquet",
output:
"outputs/{scenario}/{pipeline}_int.parquet",
run:
pp.transform.rank_int(*input, *output)
rule well_correct:
input:
"outputs/{scenario}/{pipeline}.parquet",
output:
"outputs/{scenario}/{pipeline}_wellpos.parquet",
run:
correct.corrections.subtract_well_mean(*input, *output)
rule cc_regress:
input:
"outputs/{scenario}/{pipeline}.parquet",
output:
"outputs/{scenario}/{pipeline}_cc.parquet",
params:
cc_path=config.get("cc_path"),
run:
correct.corrections.regress_out_cell_counts_parallel(
*input, *output, params.cc_path
)
rule outlier_removal:
input:
"outputs/{scenario}/{pipeline}.parquet",
output:
"outputs/{scenario}/{pipeline}_outlier.parquet",
run:
pp.clean.outlier_removal(*input, *output)
rule annotate_genes:
input:
"outputs/{scenario}/{pipeline}.parquet",
output:
"outputs/{scenario}/{pipeline}_annotated.parquet",
params:
df_gene_path="inputs/crispr.csv.gz",
df_chrom_path="inputs/gene_chromosome_map.tsv",
run:
correct.corrections.annotate_dataframe(
*input, *output, params.df_gene_path, params.df_chrom_path
)
rule pca_transform:
input:
"outputs/{scenario}/{pipeline}.parquet",
output:
"outputs/{scenario}/{pipeline}_PCA.parquet",
run:
correct.corrections.transform_data(*input, *output)
rule correct_arm:
input:
"outputs/{scenario}/{pipeline}_annotated.parquet",
output:
"outputs/{scenario}/{pipeline}_corrected.parquet",
params:
gene_expression_path="inputs/Recursion_U2OS_expression_data.csv.gz",
run:
correct.corrections.arm_correction(*input, *output, params.gene_expression_path)
rule featselect:
input:
"outputs/{scenario}/{pipeline}.parquet",
output:
"outputs/{scenario}/{pipeline}_featselect.parquet",
params:
keep_image_features=config["keep_image_features"],
run:
pp.select_features(*input, *output, *params)
rule harmony:
input:
"outputs/{scenario}/{pipeline}.parquet",
output:
"outputs/{scenario}/{pipeline}_harmony.parquet",
params:
batch_key=config["batch_key"],
run:
correct.harmony(*input, *params, *output)