-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmagicsquare.py
71 lines (52 loc) · 1.73 KB
/
magicsquare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#Piotr Warzachowski
def is_complete(board, n):
for i in range(n):
for j in range(n):
if board[i][j] == 0:
return False
return True
def find_first_free_cell(board, n):
for i in range(n):
for j in range(n):
if board[i][j] == 0:
return i, j
def is_valid(board, n):
numbers = []
magic_constant = int((n * (n*n + 1))/2)
for i in range(n):
for j in range(n):
if board[i][j] != 0:
if board[i][j] in numbers:
return False
else:
numbers.append(board[i][j])
columns = [list(arr) for arr in zip(*board)]
diagonal = [board[i][i] for i in range(len(board))]
anti_diagonal = [board[i][len(board)-i-1] for i in range(len(board))]
for i in range(n):
if 0 not in board[i] and sum(board[i])!=magic_constant:
return False
for i in range(n):
if 0 not in columns[i] and sum(columns[i]) !=magic_constant:
return False
if 0 not in diagonal:
if sum(diagonal) != magic_constant:
return False
if 0 not in anti_diagonal:
if sum(anti_diagonal) != magic_constant:
return False
return True
def back_track(matrix, n):
if is_complete(matrix, n): return matrix
i, j = find_first_free_cell(matrix, n)
for num in range(1,n*n + 1):
matrix[i][j] = num
if is_valid(matrix,n):
result = back_track(matrix, n)
if is_complete(result, n):
return result
matrix[i][j] = 0
return matrix
n = 3
matrix = [ [0 for i in range(n)] for j in range(n) ]
print(back_track(matrix, n))