-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathweather_observations.py
71 lines (49 loc) · 1.76 KB
/
weather_observations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#!/usr/bin/env python
# coding: utf-8
# In[2]:
import pandas as pd
from optionsparser import get_parameters
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("input", type=str, help="Input config file")
args = parser.parse_args()
# Set optional parameters with default values and required parameter values with their type
defaults = {
"xlabel" : "Date of observation",
"title" : "Weather Observations",
"start" : "01/06/2021",
"end" : "01/10/2021",
"output" : "weather.png",
"ylabel" : "Temperature in Celsius",
"data_column" : "T",
}
required = {
"input" : str
}
# now, parse the config file
parameters = get_parameters(args.input, required, defaults)
# load the data
weather = pd.read_csv(parameters.input,comment='#')
# define the start and end time for the plot
start_date=pd.to_datetime(parameters.start,dayfirst=True)
end_date=pd.to_datetime(parameters.end,dayfirst=True)
# The date format in the file is in a day-first format, which matplotlib does nto understand.
# so we need to convert it.
weather['Local time'] = pd.to_datetime(weather['Local time'],dayfirst=True)
# select the data
weather = weather[weather['Local time'].between(start_date,end_date)]
# Now, we have the data loaded, and adapted to our needs. So lets get plotting
# In[4]:
import matplotlib.pyplot as plt
# start the figure.
fig, ax = plt.subplots()
ax.plot(weather['Local time'], weather['T'])
# label the axes
ax.set_xlabel(parameters.xlabel)
ax.set_ylabel(parameters.ylabel)
ax.set_title(parameters.title)
# adjust the date labels, so that they look nicer
fig.autofmt_xdate()
# save the figure
fig.savefig(parameters.output)
# In[ ]: