-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathWeb_App.py
724 lines (569 loc) · 27.1 KB
/
Web_App.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
import os
import cv2
import json
import sqlite3
import webbrowser
import numpy as np
import pandas as pd
from PIL import Image
from groq import Groq
import streamlit as st
from collections import Counter
from paddleocr import PaddleOCR
from datetime import datetime, timedelta
from inference_sdk import InferenceHTTPClient
# -------------------------- DATABASE INITIALIZATION --------------------------------
def init_product_database():
conn = sqlite3.connect('products.db')
c = conn.cursor()
c.execute('''
CREATE TABLE IF NOT EXISTS products (
id INTEGER PRIMARY KEY AUTOINCREMENT,
product_name TEXT,
brand_name TEXT,
size TEXT,
mrp TEXT,
expiry_date TEXT,
manufacturing_date TEXT,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
)
''')
conn.commit()
conn.close()
def init_nos_database():
conn = sqlite3.connect('nos_count.db')
c = conn.cursor()
c.execute('''
CREATE TABLE IF NOT EXISTS predictions (
id INTEGER PRIMARY KEY AUTOINCREMENT,
class_name TEXT NOT NULL,
count INTEGER NOT NULL,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
)
''')
conn.commit()
conn.close()
def init_fruit_database():
conn = sqlite3.connect('fruit_detections.db')
c = conn.cursor()
c.execute('''
CREATE TABLE IF NOT EXISTS fruit_detections (
id INTEGER PRIMARY KEY AUTOINCREMENT,
fruit_name TEXT,
condition TEXT,
count INTEGER,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
)
''')
conn.commit()
conn.close()
init_product_database()
init_nos_database()
init_fruit_database()
YT_VIDEO = ''
GITHUB_LINK = 'https://github.com/PranjalSri108/Smart_Vision_System_for_E-commerce_Quality_Control.git'
st.title("Flipkart GRID 6.0 Submission")
tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs(["Product Label OCR", "NOS counting", "Freshness Detection", "Quality Inspector", "Conveyor Simulation", "Databases"])
with st.sidebar:
st.info(f"""QUALITY CONTROL ASSISTANT 📝
Team CIFAR version v4.2""")
st.sidebar.image("image.jpg", use_container_width=True)
if st.button('Working Video', use_container_width=True):
webbrowser.open_new_tab(YT_VIDEO)
if st.button('Github Repository', use_container_width=True):
webbrowser.open_new_tab(GITHUB_LINK)
#----------------------------------TASK 1 + TASK 2------------------------------------------
os.environ['GROQ_API_KEY'] = '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'
client = Groq()
ocr = PaddleOCR(use_angle_cls=True, lang='en')
def read_text_from_image(image_path):
try:
result = ocr.ocr(image_path)
text = ' '.join([line[1][0] for line in result[0]])
return text.strip()
except Exception as e:
print(f"An error occurred: {e}")
return None
def process_image(image):
img = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
contrast = cv2.equalizeHist(img)
return contrast
def extract_product_info(text):
try:
completion = client.chat.completions.create(
model="llama3-groq-70b-8192-tool-use-preview",
messages=[
{
"role": "user",
"content": f"""
Extract the following details from the product description below:
- Product Name
- Brand Name
- Size
- MRP (Maximum Retail Price)
- Expiry Date (Best before)
- Manufacturing Date (Mft dt)
Product Description:
{text}
Output the information in the following format:
Product Name: <product_name>
Brand Name: <brand_name>
Size: <size>
MRP: <mrp>
Expiry Date: <expiry_date>
Manufacturing Date: <manufacturing_date>
"""
}
],
temperature=0.5,
max_tokens=1024,
top_p=0.65,
stream=False,
stop=None,
)
return completion.choices[0].message.content
except Exception as e:
st.error(f"An error occurred while extracting product info: {e}")
return None
def parse_product_info(info_text):
lines = info_text.strip().split('\n')
info_dict = {}
for line in lines:
if ':' in line:
key, value = line.split(':', 1)
info_dict[key.strip()] = value.strip()
return info_dict
with tab1:
st.header("Product Label Information Extractor")
st.success("""
This tool uses Optical Character Recognition (OCR) to extract text from product labels.
It then employs AI to identify key product information such as name, brand, size, price,
and dates. This automated process significantly speeds up inventory management and
quality control tasks.
""")
input_method_ocr = st.radio("Choose input method", ("Upload Image", "Webcam"))
if input_method_ocr == "Webcam":
uploaded_imaeg_ocr = st.camera_input("Take a picture of the product label")
else:
uploaded_imaeg_ocr = st.file_uploader("Upload an image of the product label", type=["jpg", "jpeg", "png"])
if uploaded_imaeg_ocr is not None:
image = Image.open(uploaded_imaeg_ocr)
col1, col2 = st.columns(2)
with col1:
st.subheader("Product Label:")
st.image(image, use_container_width=True)
img_array = np.array(image)
processed_image = process_image(cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR))
with col2:
with st.spinner("Performing OCR..."):
extracted_text = read_text_from_image(processed_image)
if extracted_text:
with st.spinner("Extracting product information..."):
product_info = extract_product_info(extracted_text)
if product_info:
st.subheader("Product information:")
info_dict = parse_product_info(product_info)
df = pd.DataFrame(list(info_dict.items()), columns=['Attribute', 'Value'])
st.table(df)
# Save to database
conn = sqlite3.connect('products.db')
c = conn.cursor()
c.execute('''
INSERT INTO products (product_name, brand_name, size, mrp, expiry_date, manufacturing_date)
VALUES (?, ?, ?, ?, ?, ?)
''', (
info_dict.get("Product Name"),
info_dict.get("Brand Name"),
info_dict.get("Size"),
info_dict.get("MRP"),
info_dict.get("Expiry Date"),
info_dict.get("Manufacturing Date")
))
conn.commit()
conn.close()
else:
st.info("Failed to extract product information. Please try again.")
else:
st.error("Failed to extract text from the image. Please try another image.")
#--------------------------------------TASK 3-----------------------------------------------
NOS_CLIENT = InferenceHTTPClient(
api_url="https://detect.roboflow.com",
api_key="dEZoySc4HAJUazGd6JIj"
)
with tab2:
st.header("NOS Counting using IR")
st.success("""
We used a YOLOv11 custom-trained model to detect 100+ categories of food, beauty, drink, and medical items.
Accurate NOS (Number of Samples) counting is crucial for inventory management. The model ensures precise
object detection on a conveyor belt, enabling reliable counting across various product types, regardless
of their color or transparency.
""")
input_method_nos = st.radio("Choose input method", ("Upload Image", "Webcam"), key="nos")
if input_method_nos == "Webcam":
uploaded_image = st.camera_input("Take a picture to count items")
else:
uploaded_image = st.file_uploader("Upload an image to count items", type=["jpg", "jpeg", "png"], key="nos_uploader")
if uploaded_image is not None:
file_bytes = np.asarray(bytearray(uploaded_image.read()), dtype=np.uint8)
image = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR)
image_height, image_width = image.shape[:2]
max_dimension = 800
scaling_factor = min(max_dimension/image_width, max_dimension/image_height)
if scaling_factor < 1:
new_width = int(image_width * scaling_factor)
new_height = int(image_height * scaling_factor)
image = cv2.resize(image, (new_width, new_height))
temp_image_path = "temp_image.jpg"
cv2.imwrite(temp_image_path, image)
with st.spinner("Counting objects..."):
try:
result = NOS_CLIENT.infer(temp_image_path, model_id="object-clvwu/2")
if "predictions" in result:
predictions = result["predictions"]
image_with_boxes = image.copy()
for pred in predictions:
x = float(pred["x"]) * image_width
y = float(pred["y"]) * image_height
width = float(pred["width"]) * image_width
height = float(pred["height"]) * image_height
x1 = max(0, int(x - width/2))
y1 = max(0, int(y - height/2))
x2 = min(image_width - 1, int(x + width/2))
y2 = min(image_height - 1, int(y + height/2))
cv2.rectangle(image_with_boxes, (x1, y1), (x2, y2), (0, 255, 0), 2)
label = f"{pred['class']} ({pred.get('confidence', 0):.2f})"
cv2.putText(image_with_boxes, label,
(x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX,
0.5, (0, 255, 0), 2)
class_counts = Counter(pred["class"] for pred in predictions)
total_objects = len(predictions)
conn = sqlite3.connect('nos_count.db')
c = conn.cursor()
for class_name, count in class_counts.items():
c.execute('''
INSERT INTO predictions (class_name, count, timestamp)
VALUES (?, ?, ?)
''', (class_name, count, datetime.now()))
conn.commit()
conn.close()
col1, col2 = st.columns(2)
with col1:
st.image(cv2.cvtColor(image_with_boxes, cv2.COLOR_BGR2RGB),
caption="Detected Objects",
use_container_width=True)
with col2:
class_counts_table = [{"Class": class_name, "Count": count} for class_name, count in sorted(class_counts.items())]
st.table(class_counts_table)
else:
st.error("No predictions found in the model output")
except Exception as e:
st.error(f"An error occurred: {str(e)}")
# ---------------------------------------------- TASK 4 --------------------------------------------------
ROBOFLOW_TRAINED_MODEL = 'https://demo.roboflow.com/grid_6.0_dataset-qrd2r/2?publishable_key=rf_CzzWnlDIYYfT9AlYaYLXCH0D22l2'
CLIENT = InferenceHTTPClient(
api_url="https://detect.roboflow.com",
api_key="poRUdDnwwYOb6TNeyxil"
)
CLASS_COLORS = {
"apple": (0, 255, 0),
"banana": (255, 255, 0),
"guava": (255, 0, 255),
"grapes": (0, 0, 255),
"orange": (0, 165, 255),
"pomegranate": (255, 0, 0),
"strawberry": (255, 192, 203),
"bitter_gourd": (128, 128, 0),
"capsicum": (0, 128, 0),
"tomato": (255, 99, 71),
"rotten_apple": (128, 0, 128),
"rotten_banana": (255, 150, 150),
"rotten_guava": (139, 69, 19),
"rotten_grapes": (75, 0, 130),
"rotten_orange": (255, 140, 0),
"rotten_pomegranate": (165, 42, 42),
"rotten_strawberry": (255, 105, 180),
"rotten_bittergourd": (128, 128, 128),
"rotten_capsicum": (255, 228, 196),
"rotten_tomato": (220, 20, 60)
}
import sqlite3
from datetime import datetime, timedelta
def insert_fruit_detection(fruit_name, condition, count):
conn = sqlite3.connect('fruit_detections.db')
cursor = conn.cursor()
try:
current_time = datetime.now()
time_threshold = current_time - timedelta(seconds=30)
cursor.execute('''
SELECT * FROM fruit_detections
WHERE fruit_name = ? AND condition = ? AND timestamp >= ?
''', (fruit_name, condition, time_threshold))
existing_entry = cursor.fetchone()
if existing_entry:
print(f"Skipping duplicate entry for {fruit_name} ({condition}) within the last 30 seconds.")
else:
cursor.execute('''
INSERT INTO fruit_detections (fruit_name, condition, count, timestamp)
VALUES (?, ?, ?, ?)
''', (fruit_name, condition, count, current_time))
conn.commit()
print(f"Inserted new entry for {fruit_name} ({condition}).")
except sqlite3.Error as e:
print(f"An error occurred: {e}")
finally:
conn.close()
with tab3:
st.header("Fruit and Vegetable Freshness Detection")
st.success("""
Our AI-powered freshness detection system can identify and classify various fruits and
vegetables, distinguishing between fresh and rotten produce. This technology helps
maintain quality standards, reduce waste, and ensure only the freshest products reach
customers. The system can detect subtle signs of spoilage that might be missed by
human inspectors.
""")
if st.button('USE LIVE VIDEO FEED'):
webbrowser.open_new_tab(ROBOFLOW_TRAINED_MODEL)
input_method_fresh = st.radio("Choose input method", ("Upload Image", "Webcam"), key="fresh")
if input_method_fresh == "Webcam":
uploaded_image = st.camera_input("Take a picture to count items")
else:
uploaded_image = st.file_uploader("Upload an image to count items", type=["jpg", "jpeg", "png"], key="fresh_uploader")
if uploaded_image is not None:
image = np.array(bytearray(uploaded_image.read()), dtype=np.uint8)
image = cv2.imdecode(image, cv2.IMREAD_COLOR)
height, width = image.shape[:2]
image = cv2.resize(image, (int(width * 0.5), int(height * 0.5)))
temp_image_path = "temp_image.jpg"
cv2.imwrite(temp_image_path, image)
with st.spinner("Detection freshness of produce:"):
result = CLIENT.infer(temp_image_path, model_id="grid_6.0_dataset-qrd2r/2")
if "predictions" in result:
predictions = result["predictions"]
fruit_counts = Counter(pred['class'] for pred in predictions)
for fruit, count in fruit_counts.items():
condition = "rotten" if "rotten" in fruit else "fresh"
fruit_name = fruit.replace("rotten_", "")
insert_fruit_detection(fruit_name, condition, count)
for prediction in predictions:
class_name = prediction['class']
confidence = prediction['confidence']
x = prediction['x']
y = prediction['y']
width = prediction['width']
height = prediction['height']
x1 = int(x - width / 2)
y1 = int(y - height / 2)
x2 = int(x + width / 2)
y2 = int(y + height / 2)
color = CLASS_COLORS.get(class_name, (255, 0, 0))
cv2.rectangle(image, (x1, y1), (x2, y2), color, 4)
text_size = cv2.getTextSize(class_name, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)[0]
label_bg_start = (x1, y1 - text_size[1] - 10)
label_bg_end = (x1 + text_size[0], y1)
cv2.rectangle(image, label_bg_start, label_bg_end, color, cv2.FILLED)
cv2.putText(image, class_name, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,0), 2)
st.image(image, channels="BGR", use_container_width=True)
else:
st.write("No predictions found.")
#-----------------------------------------BONUS TASK---------------------------------------------------
INSPECTION_TRAINED_MODEL = 'https://demo.roboflow.com/bottle_can_quality/1?publishable_key=rf_UvXf0JevdVfcHVV4hMA2XtK8BLq1'
BOTTLE_CLIENT = InferenceHTTPClient(
api_url="https://detect.roboflow.com",
api_key="ze2R08zoIqYfFDzJ66lH"
)
with tab4:
st.header("Bottle and Can Quality Inspector")
st.success("""
This bonus task demonstrates our approach to structural quality checks for products.
The system analyzes bottle images to detect damages, assess liquid levels, and verify
label integrity. In cans it detects deformation, fissure or open-can defects This automated inspection process ensures consistency in quality control,
reduces human error, and can significantly speed up the production line while maintaining
high quality standards.
""")
if st.button('USE YOUR WEB-CAM'):
webbrowser.open_new_tab(INSPECTION_TRAINED_MODEL)
uploaded_file = st.file_uploader("Choose an image of a Bottle...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
image = cv2.imdecode(file_bytes, 1)
height, width = image.shape[:2]
image = cv2.resize(image, (int(width * 0.1), int(height * 0.1)))
cv2.imwrite("uploaded_image.jpg", image)
with st.spinner("Inspecting Quality:"):
result = BOTTLE_CLIENT.infer("uploaded_image.jpg", model_id="bottle_quality/4")
predictions = result.get('predictions', [])
point_liq = (0,0)
point_bottle = (0,0)
liq_height = 0
colors = {
'Bottle': (255, 0, 0),
'Damaged_Bottle': (255, 150, 0),
'Liquid_Level': (0, 255, 0),
'Proper_Label': (255, 255, 0),
'Damaged_Label': (0, 0, 255)
}
for prediction in predictions:
class_name = prediction['class']
color = colors.get(class_name, (0, 255, 255))
x_min = int(prediction['x'] - prediction['width'] / 2)
y_min = int(prediction['y'] - prediction['height'] / 2)
x_max = int(prediction['x'] + prediction['width'] / 2)
y_max = int(prediction['y'] + prediction['height'] / 2)
if class_name == "Bottle" or class_name == "Damaged_Bottle":
point_bottle = (int((x_min + x_max) / 2), y_max)
cv2.circle(image, point_bottle, radius=1, color=(255, 0, 255),thickness=2)
if class_name == "Liquid_Level":
point_liq = (int((x_min + x_max) / 2), (y_max + y_min)//2)
cv2.circle(image, point_liq, radius=1, color=(255, 0, 255),thickness=2)
cv2.rectangle(image, (x_min, y_min), (x_max, y_max), color, 1)
cv2.line(image, point_liq, point_bottle, color=(255, 0, 255), thickness=1)
liq_height = point_bottle[1] - point_liq[1]
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
col1, col2 = st.columns(2)
with col1:
st.subheader("Quality Check:")
with col2:
st.subheader("Inference:")
col1, col2, col3 = st.columns([3, 1, 2])
with col1:
st.image(image_rgb, use_container_width=True)
with col2:
for prediction in predictions:
class_name = prediction['class']
if class_name == "Bottle": st.info("BOTTLE:")
if class_name == "Damaged_Bottle": st.info("BOTTLE:")
if class_name == "Liquid_Level": st.info("LIQ LEVEL:")
if class_name == "Proper_Label": st.info("LABEL:")
if class_name == "Damaged_Label": st.info("LABEL:")
with col3:
for prediction in predictions:
class_name = prediction['class']
if class_name == "Bottle": st.success("Correct Shape")
if class_name == "Damaged_Bottle": st.error("Damaged Shape")
if ((class_name == "Liquid_Level") and liq_height > 30): st.success("Correct")
if ((class_name == "Liquid_Level") and liq_height < 30): st.error("Wrong")
if class_name == "Proper_Label": st.success("Proper Label")
if class_name == "Damaged_Label": st.error("Damaged")
uploaded_file_can = st.file_uploader("Choose an image of a Can....", type=["jpg", "jpeg", "png"])
if uploaded_file_can is not None:
file_bytes = np.asarray(bytearray(uploaded_file_can.read()), dtype=np.uint8)
image = cv2.imdecode(file_bytes, 1)
height, width = image.shape[:2]
image = cv2.resize(image, (int(width * 0.5), int(height * 0.5)))
cv2.imwrite("uploaded_image.jpg", image)
with st.spinner("Inspecting Quality:"):
result = BOTTLE_CLIENT.infer("uploaded_image.jpg", model_id="bottle_can_quality/1")
predictions = result.get('predictions', [])
point_liq = (0,0)
point_bottle = (0,0)
liq_height = 0
colors = {
'Perfect': (0, 255, 0),
'Open-can': (255, 255, 0),
'Fissure': (0, 0, 255),
'Deformation': (255, 0, 255),
}
for prediction in predictions:
class_name = prediction['class']
color = colors.get(class_name, (0, 255, 255))
x_min = int(prediction['x'] - prediction['width'] / 2)
y_min = int(prediction['y'] - prediction['height'] / 2)
x_max = int(prediction['x'] + prediction['width'] / 2)
y_max = int(prediction['y'] + prediction['height'] / 2)
cv2.rectangle(image, (x_min, y_min), (x_max, y_max), color, 6)
(text_width, text_height), _ = cv2.getTextSize(class_name, cv2.FONT_HERSHEY_SIMPLEX, fontScale=2, thickness=4)
text_offset_x, text_offset_y = x_min, y_min - text_height - 30
box_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width, text_offset_y + text_height))
cv2.rectangle(image, box_coords[0], box_coords[1], color=colors.get(class_name), thickness=cv2.FILLED)
cv2.putText(image, class_name, (x_min, y_min - 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=2, color=(0,0,0), thickness=4)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
col1, col2 = st.columns(2)
with col1:
st.subheader("Quality Check:")
st.image(image_rgb, use_container_width=True)
with col2:
st.subheader("Inference:")
for prediction in predictions:
class_name = prediction['class']
if class_name == "Perfect": st.success("Perfect: Ready for supply")
if class_name == "Open-can": st.error("Not Approved: Open Can")
if class_name == "Fissure": st.success("Not Approved: Fissure")
if class_name == "Deformation": st.error("Not Approved: Deformation")
#------------------------------------------BONUS TASK-----------------------------------------------
IMAGE_PATH = 'Lighting-2.jpg'
HEAT_PATH = 'heatma.jpg'
with tab5:
st.header("Simulation of Conveyor Belt")
st.subheader("Smart Lighting System:")
st.write(f'''To enhance the accuracy of defect detection and quality assessment in our
smart vision system, we propose the implementation of a unique, controlled
lighting setup tailored specifically for hyperspectral imaging. Proper illumination
is critical to minimize shadows, reflections, and noise, ensuring high-quality image
acquisition across various lighting conditions. Our proposed lighting system includes:''')
col1, col2 = st.columns([1,1])
with col1:
st.image(IMAGE_PATH, channels="BGR", use_container_width=True)
st.image(HEAT_PATH, channels="BGR", use_container_width=True)
with col2:
st.info(f'''Here's a more concise points of the idea:
1. *Uniform Illumination*: High-intensity LED lights on both sides of the conveyor belt provide even lighting to minimize shadows, enhancing hyperspectral camera accuracy.
2. *Wavelength-Specific Lights*: A mix of lights emitting at different wavelengths ensures the hyperspectral camera captures detailed spectral data for precise defect and quality analysis.
3. *Automated Lighting Adjustment*: Sensors will monitor lighting conditions and automatically adjust light intensity and wavelength in real-time for optimal imaging.''')
st.subheader("Robotic Arm Integration with Mounted Camera:")
st.write(f"""We have also designed an AUTOMATED SEGREGATOR using ROBOTIC ARM equipped with a CAMERA,
the RED blocks here represent the faulty/damaged/rotten items which gets detected by the camera and
then gets separated from the fresh batch.\n The video shown here is a GAZEBO stimulation using UR5
Robotic arm which we prepared using ROS Noetic""")
video_file = open('gazebo_arm.mp4', 'rb')
video_bytes = video_file.read()
st.video(video_bytes)
# ---------------------------------- VIEW DATABASES --------------------------------------
with tab6:
st.header("Database Viewer")
# Options to choose which database to view
db_choice = st.radio("Choose a database to view:", ("Products", "NOS Counter", "Fruit Detections"))
def view_products_db():
conn = sqlite3.connect('products.db')
df = pd.read_sql_query("SELECT * FROM products", conn)
conn.close()
return df
def view_nos_counter_db():
conn = sqlite3.connect('nos_count.db')
df = pd.read_sql_query("SELECT * FROM predictions", conn)
conn.close()
return df
def view_fruit_detections_db():
conn = sqlite3.connect('fruit_detections.db')
df = pd.read_sql_query("SELECT * FROM fruit_detections", conn)
conn.close()
return df
if db_choice == "Products":
st.subheader("Products Database")
try:
df_products = view_products_db()
if not df_products.empty:
st.table(df_products)
else:
st.info("No records found in the Products database.")
except Exception as e:
st.error(f"Error loading Products database: {e}")
elif db_choice == "NOS Counter":
st.subheader("NOS Counter Database")
try:
df_nos = view_nos_counter_db()
if not df_nos.empty:
st.table(df_nos)
else:
st.info("No records found in the Predictions database.")
except Exception as e:
st.error(f"Error loading Predictions database: {e}")
elif db_choice == "Fruit Detections":
st.subheader("Fruit Detections Database")
try:
df_fruits = view_fruit_detections_db()
if not df_fruits.empty:
st.table(df_fruits)
else:
st.info("No records found in the Fruit Detections database.")
except Exception as e:
st.error(f"Error loading Fruit Detections database: {e}")