-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathexperiment_manager.py
679 lines (603 loc) · 34.4 KB
/
experiment_manager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
import os
import json
import random
import pickle
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
from PYEVALB import parser as pyparser
import experiments
import utils
import visualizations
import granularity
from granularity import SeqRange, VectorRange, TaggedString, cluster_decomp, create_oracle_decomp_fn, vr_from_string
from eval_functions import eval_f1, iou_score_multi, rmse, oks_score_multi, _oks_score, gleu, gleu2way, bleu, bleu2way, ted_distance
import merge_functions
import agreement
from sim_parser import evalb
from sim_ranker import kendaltauscore
from sim_keypoints import KeypointSimulator
import ner_alignment
def label2tvr(label, default=None):
return default if label is None else [SeqRange(l) for l in label]
# return default if label is None else [{"range":SeqRange(l), "tag":None} for l in label]
def convert2vr(annotations):
result = []
for annotation in annotations:
left = annotation["left"]
top = annotation["top"]
if annotation["width"] > 0 and annotation["height"] > 0:
result.append(VectorRange([left, top], [left + annotation["width"], top + annotation["height"]]))
else:
return np.nan
return result
class ExperimentResult(pd.DataFrame):
'''
Output experiment results together as csv/dataframe with following columns:
* Dataset name
* Evaluation function name
* Distance function name
* Aggregation method name
* Predicted annotations for all items
* Total average evaluation score
* Extra arguments
'''
def __init__(self, dataset_name, eval_fn_name, dist_fn_name, agg_method_name, preds, score, ss, extra=None):
result = {
"Dataset name": [dataset_name],
"Eval Fn name": [eval_fn_name],
"Dist Fn name": [dist_fn_name],
"Agg method name": [agg_method_name],
"Predicted": [preds],
"Eval score": [score],
"Statistical significance": [ss],
"Misc.": [extra]
}
super().__init__(result)
class SimpleExperiment(experiments.RealExperiment):
def __init__(self, **kwargs):
eval_fn = kwargs['eval_fn']
dist_fn = kwargs['dist_fn']
super().__init__(eval_fn=eval_fn,
label_colname='answer',
item_colname='question',
uid_colname='worker',
distance_fn=dist_fn)
def set_merge_fn(self, merge_fn):
self.merge_fn = merge_fn
class AffectExperiment(experiments.RealExperiment):
def __init__(self, **kwargs):
super().__init__(lambda x,y: 1 / rmse(x,y) , "annotation", "item", "uid", rmse)
self.data_dir = "data/snow_affect/"
self.merge_fn = merge_functions.numerical_mean
def setup(self):
emotions = ["surprise", "disgust", "sadness", "fear", "valence", "joy", "anger"]
def load_snow(relfilepath):
return pd.read_csv(relfilepath, sep="\t").set_index("!amt_annotation_ids")
dfs = [load_snow(self.data_dir + f + ".standardized.tsv").reset_index() for f in emotions]
full_df = pd.concat(dfs, join="inner", axis=1)
full_df["annotation"] = full_df["response"].values.tolist()
full_df["groundtruth"] = full_df["gold"].values.tolist()
full_df["uid"] = full_df["!amt_worker_ids"].values[:,0]
full_df["item"] = full_df["orig_id"].values[:,0]
full_df = full_df[["item", "uid", "annotation", "groundtruth"]]
super().setup(full_df, full_df[["item", "groundtruth"]], c_gold_label="groundtruth")
class DecompositionExperiment(experiments.RealExperiment):
def __init__(self, eval_fn, label_colname, item_colname, uid_colname, distance_fn=None, **kwargs):
super().__init__(eval_fn, label_colname, item_colname, uid_colname, distance_fn, **kwargs)
self.gran_experiments = {}
self.cluster_plotter = None
def register_gran_exp(self, name, granno_df):
gran_exp = experiments.RealExperiment(self.eval_fn, self.label_colname, "newItemID", self.uid_colname)
gran_exp.setup(granno_df, merge_index="origItemID")
self.gran_experiments[name] = gran_exp
def setup(self, annodf, golddf, c_gold_item=None, c_gold_label=None, skip_gran=True, **kwargs):
super().setup(annodf=annodf, golddf=golddf, c_gold_item=c_gold_item, c_gold_label=c_gold_label)
if not skip_gran:
self.register_gran_exp("cskip_granluster", granularity.decomposition(self, decomp_fn=cluster_decomp, plot_fn=self.cluster_plotter))
# oracle_decomp = create_oracle_decomp_fn(self.golddict)
# self.register_gran_exp("oracle", granularity.decomposition(self, decomp_fn=oracle_decomp, plot_fn=self.cluster_plotter))
def register_weighted_merge(self):
if hasattr(self, "merge_fn"):
for gran_experiment in self.gran_experiments.values():
gran_experiment.merge_fn = self.merge_fn
gran_experiment.register_weighted_merge()
super().register_weighted_merge()
def train(self, dem_iter, mas_iter):
super().train(dem_iter=dem_iter, mas_iter=mas_iter)
for gran_experiment in self.gran_experiments.values():
gran_experiment.train(dem_iter=dem_iter, mas_iter=mas_iter)
def test(self, debug, **kwargs):
super().test(debug=debug, **kwargs)
for name, gran_experiment in self.gran_experiments.items():
print(name)
gran_experiment.test_recombination(orig_golddict=self.golddict, debug=debug)
gran_sb = {F"GRANULAR {name} {k}": v for k, v in gran_experiment.scoreboard.items()}
gran_sb_scores = {F"GRANULAR {name} {k}": v for k, v in gran_experiment.scoreboard_scores.items()}
self.scoreboard.update(gran_sb)
self.scoreboard_scores.update(gran_sb_scores)
# self.gran_exp.test_recombination(orig_golddict=self.golddict, debug=debug)
# self.gran_exp_orc.test_recombination(orig_golddict=self.golddict, debug=debug)
# gran_sb = {F"GRANULAR {k}": v for k, v in self.gran_exp.scoreboard.items()}
# gran_orc_sb = {F"GRANULAR ORACLE {k}": v for k, v in self.gran_exp_orc.scoreboard.items()}
# gran_sb_scores = {F"GRANULAR {k}": v for k, v in self.gran_exp.scoreboard_scores.items()}
# gran_orc_sb_scores = {F"GRANULAR ORACLE {k}": v for k, v in self.gran_exp_orc.scoreboard_scores.items()}
# self.scoreboard = {**self.scoreboard, **gran_sb, **gran_orc_sb}
# self.scoreboard_scores = {**self.scoreboard_scores, **gran_sb_scores, **gran_orc_sb_scores}
class PICOExperiment(DecompositionExperiment):
def __init__(self, **kwargs):
super().__init__(lambda x,y: eval_f1(x, y, strict_range=False, strict_tag=False, str_spans=False),
"label", "itemID", "uid")
self.rawdf = pd.read_json("data/PICO/PICO-annos-crowdsourcing.json", lines=True)
# self.rawdf = pd.read_json("data/PICO/PICO-annos-crowdsourcing-big.json", lines=True)
self.aggdf = pd.read_json("data/PICO/PICO-annos-crowdsourcing-agg.json", lines=True)
self.golddf = pd.read_json("data/PICO/PICO-annos-professional.json", lines=True)
self.merge_fn = merge_functions.vectorrange_merge
self.cluster_plotter = visualizations.plot_seqrange
def setup(self):
userIDs = []
itemIDs = []
labels = []
golds = []
hmmcrowds = []
majorityvotes = []
for row in self.rawdf.iterrows():
itemID = row[1]["docid"]
data = row[1]["Participants"]
goldvals = self.golddf[self.golddf["docid"] == itemID]["Participants"].values
gold = goldvals[0] if goldvals else {}
gold = gold.get("MedicalStudent", [])
aggvals = self.aggdf[self.aggdf["docid"] == itemID]["Participants"].values
agg = aggvals[0] if aggvals else {"HMMCrowd":[], "MajorityVote":[]}
for userID, label in data.items():
userIDs.append(userID)
itemIDs.append(itemID)
labels.append(label2tvr(label, default=[]))
golds.append(label2tvr(gold))
hmmcrowds.append(agg["HMMCrowd"])
majorityvotes.append(agg["MajorityVote"])
df = pd.DataFrame({"uid":userIDs, "itemID":itemIDs, "label":labels, "gold":golds,
"HMMCrowd":hmmcrowds, "MajorityVote":majorityvotes})
df = df.sort_values("itemID")
userIdDict = utils.make_categorical(df, "uid")
itemIdDict = utils.make_categorical(df, "itemID")
anno_df = df.copy()
super().setup(anno_df, anno_df, c_gold_label="gold")
mv_labels = {k:label2tvr(v) for k, v in dict(df.groupby("itemID").first()["MajorityVote"].dropna()).items()}
hmm_labels = {k:label2tvr(v) for k, v in dict(df.groupby("itemID").first()["HMMCrowd"].dropna()).items()}
self.register_baseline("Tokenwise MV", mv_labels)
self.register_baseline("Crowd-HMM", hmm_labels)
class BBExperiment(DecompositionExperiment):
def __init__(self, eval_fn=iou_score_multi, dist_fn=None, **kwargs):
super().__init__(eval_fn=eval_fn, label_colname="annotation", item_colname="item", uid_colname="uid")
self.merge_fn = merge_functions.vectorrange_merge
# np.random.seed(42)
with open('data/gt_canary_od_pretty_02042020.json') as f:
self.dataset = json.load(f)
self.cluster_plotter = visualizations.plot_vectorrange
def setup(self, **kwargs):
if kwargs.get("random_sample"):
cols = ["item", "uid", "annotation", "groundtruth"]
NUM_ITEMS = kwargs.pop("n_items", None) or 200
MAX_WORKERS_PER_ITEM = kwargs.pop("max_workers_per_item", None) or 100
i = 0
rows = []
def n_objects(value):
return len(value['ground_truth']['annotations'])
if kwargs.get("top_n_objects"):
self.dataset = dict(sorted(self.dataset.items(), key=lambda item: -n_objects(item[1])))
elif kwargs.get("bottom_n_objects"):
self.dataset = dict(sorted(self.dataset.items(), key=lambda item: n_objects(item[1])))
for image_key, all_data in self.dataset.items():
i+=1
if i > NUM_ITEMS:
break
raw_annotations_dict = all_data['worker_answers']
gt = all_data['ground_truth']['annotations']
keys = list(raw_annotations_dict.keys())
random.shuffle(keys)
for worker_id in keys[:MAX_WORKERS_PER_ITEM]:
anno = raw_annotations_dict[worker_id]
stripped_anno = anno['answerContent']['boundingBox']['boundingBoxes']
row = [image_key, worker_id, stripped_anno, gt]
rows.append(row)
df = pd.DataFrame(rows, columns=cols)
df["annotation"] = df["annotation"].apply(convert2vr).dropna()
df["groundtruth"] = df["groundtruth"].apply(convert2vr).dropna()
super().setup(annodf=df, golddf=df, c_gold_item="item", c_gold_label="groundtruth", **kwargs)
output_file = kwargs.get("output_file")
if output_file:
self.annodf.to_csv(F"data/{output_file}_data.csv")
with open(F"data/{output_file}_gold.pkl", 'wb') as file_stream:
pickle.dump(self.golddict, file_stream)
else:
bbdf = pd.read_csv("data/boundingbox_data.csv")
anno_vrs = []
list2vrs = lambda x: [vr_from_string(string) for string in x]
for anno_str in bbdf.annotation.values:
anno_str_json = anno_str.replace('(', '"(').replace(')', ')"')
anno_vr = list2vrs(json.loads(anno_str_json))
anno_vrs.append(anno_vr)
bbdf["annotation"] = anno_vrs
with open("data/boundingbox_gold.json") as f:
bbgold = json.load(f)
self.golddict = {int(k): list2vrs(v) for k, v in bbgold.items()}
super().setup(annodf=bbdf, golddf=None, **kwargs)
with open("data/boundingbox_gvanhorn_predictions.json") as f:
gvanhorn_preds = json.load(f)
list2vrs = lambda x: [VectorRange(t[0], t[1]) for t in x]
gvanhorn_preds = {int(k): list2vrs(v) for k, v in gvanhorn_preds.items()}
self.register_baseline("GVANHORN", gvanhorn_preds)
class NERExperiment(DecompositionExperiment):
def __init__(self, eval_fn=None, dist_fn=None, **kwargs):
if eval_fn is None:
eval_fn = lambda x,y: eval_f1(x, y, strict_range=False, strict_tag=False, str_spans=False)
if dist_fn is None:
dist_fn = lambda x,y: 1 - eval_f1(x, y, strict_range=False, strict_tag=False, str_spans=False)
super().__init__(eval_fn, "annotation", "item", "worker", dist_fn)
self.data_dir = "../seqcrowd-acl17/task1/val/mturk_train_data/"
self.gold_dir = "../seqcrowd-acl17/task1/val/ground_truth/"
def setup(self):
def load(data_dir, isgold=False):
workers = []
items = []
raw_labels = []
worker_dirs = [""] if isgold else os.listdir(data_dir)
for worker_dir in [d for d in worker_dirs if "." not in d]:
item_files = [f for f in os.listdir(data_dir + worker_dir) if ".txt" in f]
for item_file in item_files:
item_dir = data_dir + worker_dir + "/" + item_file
with open(item_dir) as openedfile:
raw_label = []
for line in openedfile:
token_labels = [t for t in line.replace("\n", "").split(" ")]
if len(token_labels) == 2:
raw_label.append(token_labels)
workers.append("gold" if isgold else worker_dir)
items.append(item_file.replace(".txt", ""))
raw_labels.append(raw_label)
return pd.DataFrame({"worker":workers, "item":items, "raw_label":raw_labels})
def clean(df):
df["clean_label"] = [[seq for seq in label if len(seq[0]) > 0] for label in df["raw_label"]]
return df
def raw2ranges(raw_label):
''' represent annotations as sequences of token index ranges (with tags) '''
result = []
start_i = None
curr_tag = 'O'
for i, token_label in enumerate(raw_label):
if token_label[1] != curr_tag and token_label[1][0] != "I": # new labeled span
newspan = {"range":[start_i, i], "tag":curr_tag}
if start_i is not None and curr_tag != "O":
newspan["tag"] = newspan["tag"][2:]
sr = SeqRange(newspan["range"], tag=newspan["tag"])
result.append(sr)
start_i = i
curr_tag = token_label[1]
return result
def raw2NEs(raw_label):
''' represent annotations as named entity strings (with tags) '''
result = []
start_i = None
curr_tag = 'O'
for i, token_label in enumerate(raw_label):
if token_label[1] != curr_tag and token_label[1][0] != "I": # new labeled span
newspan = {"range":[start_i, i], "tag":curr_tag}
if start_i is not None and curr_tag != "O":
start, end = tuple(newspan["range"])
newspan["range"] = (" ".join([x[0] for x in raw_label[start:end]])).lower()
newspan["tag"] = newspan["tag"][2:]
result.append(TaggedString(newspan["range"], newspan["tag"]))
start_i = i
curr_tag = token_label[1]
return result
anno_df = clean(load(self.data_dir).sort_values("item"))
gold_df = clean(load(self.gold_dir, isgold=True))
merged_df = ner_alignment.align(anno_df, gold_df)
merged_df["annotation"] = merged_df["annotation"].apply(raw2ranges)
merged_df["gold"] = merged_df["gold"].apply(raw2ranges)
super().setup(merged_df, merged_df[["item", "gold"]], c_anno_label="annotation", c_gold_label="gold")
class RationalesExperiment(experiments.CategoricalExperiment):
def __init__(self, eval_fn=None, dist_fn=None, **kwargs):
if eval_fn is None:
eval_fn = lambda x,y: (1 if x["cat"] == y["cat"] else 0)
super().__init__(eval_fn=eval_fn, distance_fn=dist_fn)
self.data_dir = "data/webcrowd25k/crowd_judgements.csv"
self.gold_dir = "data/webcrowd25k/gold_judgements.txt"
def setup(self):
allannodf = pd.read_csv(self.data_dir, sep=",", error_bad_lines=False, header=0,
names=["uid","_1","url","_2","relevance_label","_3","tid","_4","rationale","duration","item","_5"])
allgolddf = pd.read_csv(self.gold_dir, sep=" ", error_bad_lines=False, header=0,
names=["tid", "_", "item", "relevance_gold"])
TOPIC_ID = [259,267] # find ones where AGG underperforms RU
annodf = allannodf[allannodf["tid"].isin(TOPIC_ID)].copy()
golddf = allgolddf[allgolddf["tid"].isin(TOPIC_ID)].copy()
annodf["annotation"] = [{"cat":cat, "rat":rat} for cat, rat in zip(annodf["relevance_label"], annodf["rationale"])]
golddf["gold"] = [{"cat":cat, "rat":None} for cat in golddf["relevance_gold"]]
super().setup(annodf, golddf, c_anno_label="annotation", c_gold_label="gold")
class TranslationExperiment(experiments.RealExperiment):
def __init__(self, eval_fn=None, dist_fn=None, **kwargs):
super().__init__(gleu, "workeranswer", "sentence", "worker", distance_fn=lambda x,y: 1 - gleu2way(x,y))
ds = kwargs.get("DATASET_KEY")
self.golddf = pd.read_csv(F"../CrowdWSA2019/data/CrowdWSA2019_{ds}_gt.tsv", delimiter="\t")
self.annodf = pd.read_csv(F"../CrowdWSA2019/data/CrowdWSA2019_{ds}_label_anonymous.tsv", delimiter="\t")
def setup(self):
super().setup(annodf=self.annodf, golddf=self.golddf, c_gold_label="trueanswer")
class J1TranslationExperiment(TranslationExperiment):
def __init__(self, eval_fn=None, dist_fn=None, **kwargs):
super().__init__(eval_fn=eval_fn, distance_fn=dist_fn, DATASET_KEY="J1")
class T1TranslationExperiment(TranslationExperiment):
def __init__(self, eval_fn=None, dist_fn=None, **kwargs):
super().__init__(eval_fn=eval_fn, distance_fn=dist_fn, DATASET_KEY="T1")
class T2TranslationExperiment(TranslationExperiment):
def __init__(self, eval_fn=None, dist_fn=None, **kwargs):
super().__init__(eval_fn=eval_fn, distance_fn=dist_fn, DATASET_KEY="T2")
class CombinedTranslationExperiment(experiments.RealExperiment):
def __init__(self, eval_fn=None, dist_fn=None, **kwargs):
super().__init__(gleu, "workeranswer", "sentence", "worker", distance_fn=lambda x,y: 1 - gleu2way(x,y))
j1_part = J1TranslationExperiment()
t1_part = T1TranslationExperiment()
t2_part = T2TranslationExperiment()
self.annodf = pd.concat([j1_part.annodf, t1_part.annodf, t2_part.annodf])
self.golddf = pd.concat([j1_part.golddf, t1_part.golddf, t2_part.golddf])
def setup(self):
super().setup(annodf=self.annodf, golddf=self.golddf, c_gold_label="trueanswer")
class ParserExperimentTED(experiments.RealExperiment):
def __init__(self, eval_fn=None, dist_fn=None, **kwargs):
ted_eval = lambda x, y: 1 - ted_distance(x, y)
super().__init__(ted_eval, "parse", "sentenceId", "uid", ted_distance)
key = kwargs.pop("key", "")
golddict = pickle.load(open(F"parser{key}_golddict.pkl", 'rb'))
self.golddf = pd.DataFrame.from_dict(golddict, orient="index", columns=["gold"]).reset_index()
self.annodf = pickle.load(open(F"parser{key}_annodf.pkl", 'rb'))
self.annodf = self.annodf.sort_values("sentenceId")
def setup(self):
super().setup(annodf=self.annodf, golddf=self.golddf, c_gold_label="gold", c_gold_item="index")
class ParserExperiment(experiments.RealExperiment):
def __init__(self, eval_fn=None, dist_fn=None, **kwargs):
ted_eval = lambda x, y: 1 - ted_distance(x, y)
super().__init__(ted_eval, "annotaton", "sentenceId", "uid", ted_distance)
ds = kwargs.get("DATASET_KEY")
str2parse = pyparser.create_from_bracket_string
golddict = pd.read_json(F"data/parser_{ds}_gold.json", typ='series')
self.golddf = pd.DataFrame(golddict, columns=["str"]).reset_index()
self.golddf["gold"] = [str2parse(p) for p in self.golddf["str"].values]
self.annodf = pd.read_csv(F"data/parser_{ds}.csv")
self.annodf["annotation"] = [str2parse(p) for p in self.annodf["parse"].values]
self.annodf = self.annodf.sort_values("sentenceId")
def setup(self):
super().setup(annodf=self.annodf, golddf=self.golddf, c_gold_label="gold", c_gold_item="index")
class EasyParserExperiment(ParserExperiment):
def __init__(self, eval_fn=None, dist_fn=None, **kwargs):
super().__init__(eval_fn=eval_fn, distance_fn=dist_fn, DATASET_KEY="easy")
class HardParserExperiment(ParserExperiment):
def __init__(self, eval_fn=None, dist_fn=None, **kwargs):
super().__init__(eval_fn=eval_fn, distance_fn=dist_fn, DATASET_KEY="hard")
class SimpleExperimentBase(experiments.RealExperiment):
def __init__(self, dataset_name, eval_fn=None, dist_fn=None):
eval_fn = lambda x, y: (1 if x == y else 0)
super().__init__(eval_fn=eval_fn, label_colname='answer', item_colname='question', uid_colname='worker')
self.dataset_name = dataset_name
def setup(self):
self.annodf = pd.read_csv(F"data/simple/answer_{self.dataset_name}.csv")
self.golddf = pd.read_csv(F"data/simple/truth_{self.dataset_name}.csv")
super().setup(annodf=self.annodf, golddf=self.golddf, c_gold_label="truth", c_gold_item="question")
def datacopy(self):
exp_copy = type(self)(self.dataset_name)
exp_copy.annodf = self.annodf
exp_copy.stan_data = self.stan_data
exp_copy.golddict = self.golddict
exp_copy.supervised_items = self.supervised_items
exp_copy.supervised_labels = self.supervised_labels
return exp_copy
def simple_experiment(dataset_name, eval_fn, dist_fn, merge_fn):
def factory():
expmnt = SimpleExperimentBase(dataset_name)
return expmnt
return factory
def categorical_experiment(dataset_name):
eval_fn = lambda x, y: (1 if x == y else 0)
dist_fn = lambda x, y: (0 if x == y else 1)
return simple_experiment(dataset_name, eval_fn, dist_fn, merge_fn=None)
def numerical_experiment(dataset_name):
eval_fn = lambda x,y: 1 / rmse(x,y)
dist_fn = rmse
return simple_experiment(dataset_name, eval_fn, dist_fn, merge_fn=merge_functions.numerical_mean)
class KeypointsExperiment(DecompositionExperiment):
def __init__(self, eval_fn=oks_score_multi, dist_fn=None, **kwargs):
super().__init__(eval_fn=eval_fn, label_colname="annotation", item_colname="item", uid_colname="uid")
self.merge_fn = merge_functions.keypoint_merge
def keypoint_plotter(annotation, color="k", alpha=1, text=None, ax=None):
if ax is None:
ax = plt
category = 1 #data["category"].iloc[i]
skeleton = self.simulator.category_id_skeletons[category]
for edge in skeleton:
if 0 not in annotation[edge].T:
ax.plot(*annotation[edge].T, color, alpha=alpha)
# ax.plot(*annotation[edge].T, color + "--", alpha=alpha)
self.cluster_plotter = keypoint_plotter
def setup(self, **kwargs):
if kwargs.get("sim"):
experiments.KeypointsExperiment.setup(self, n_items=200, n_users=100, pct_items=0.05, uerr_a=2, uerr_b=1, difficulty_a=1, difficulty_b=1, ngoldu=0)
else:
self.simulator = KeypointSimulator(max_items=0)
annodf = pickle.load(open("data/keypoints_simdata.pkl", 'rb'))
golddf = pickle.load(open("data/keypoints_simgold.pkl", 'rb'))
super().setup(annodf=annodf, golddf=golddf, c_gold_item="index", c_gold_label="gold", **kwargs)
class RankingExperiment(experiments.RealExperiment):
def __init__(self, eval_fn=None, dist_fn=None, **kwargs):
super().__init__(kendaltauscore, "rankings", "topic_item", "uid")
self.annodf = pd.read_csv("data/rankings_simdata.csv")
self.annodf["rankings"] = [np.array(list(map(int, strlabel[1:-1].split()))) for strlabel in self.annodf["rankings"].values]
self.golddf = pd.read_csv("data/rankings_simgold.csv")
self.golddf["gold"] = [np.array(list(map(int, strlabel[1:-1].split()))) for strlabel in self.golddf["gold"].values]
self.merge_fn = merge_functions.borda_count
def setup(self):
super().setup(annodf=self.annodf, golddf=self.golddf, c_gold_label="gold", c_gold_item="topic_item")
class SimRankingExperiment(experiments.RankerExperiment):
def __init__(self, eval_fn=None, dist_fn=None, **kwargs):
super().__init__(base_dir="data/qrels.all.txt")
self.distance_fn = lambda x,y: 1 - self.eval_fn(x, y)
self.merge_fn = merge_functions.borda_count
def setup(self):
super().setup(n_items=100, n_users=30, pct_items=0.2, uerr_a=2, uerr_b=1, difficulty_a=1, difficulty_b=1, ngoldu=0)
def get_annotator_empirical_skill(expmnt):
golddf = pd.DataFrame({
expmnt.item_colname:list(expmnt.golddict.keys()),
"gold":list(expmnt.golddict.values())
})
joindf = expmnt.annodf.join(golddf, on=expmnt.item_colname, rsuffix="g")
joindf["evalscore"] = joindf.apply(lambda x: expmnt.eval_fn(x["gold"], x[expmnt.label_colname]), axis=1)
bau = experiments.user_avg_dist(expmnt.stan_data)
uids = []
goldscores = []
bauscores = []
for uid, udf in utils.groups_of(joindf, expmnt.uid_colname):
uids.append(uid)
goldscores.append(np.mean(udf["evalscore"]))
bauscores.append(bau.get(uid+1))
return pd.DataFrame({expmnt.uid_colname:uids, "goldscore":goldscores, "bauscore":bauscores})
def test_NER(debug=True):
eval_fns = {}
dist_fns = {}
eval_fns["strict range strict tag"] = lambda x, y: eval_f1(x, y, strict_range=True, strict_tag=True, str_spans=True)
eval_fns["strict range lenient tag"] = lambda x, y: eval_f1(x, y, strict_range=True, strict_tag=False, str_spans=True)
eval_fns["lenient range strict tag"] = lambda x, y: eval_f1(x, y, strict_range=False, strict_tag=True, str_spans=True)
eval_fns["lenient range lenient tag"] = lambda x, y: eval_f1(x, y, strict_range=False, strict_tag=False, str_spans=True)
dist_fns["strict range strict tag"] = lambda x, y: 1 - eval_f1(x, y, strict_range=True, strict_tag=True, str_spans=True)
dist_fns["strict range lenient tag"] = lambda x, y: 1 - eval_f1(x, y, strict_range=True, strict_tag=False, str_spans=True)
dist_fns["lenient range strict tag"] = lambda x, y: 1 - eval_f1(x, y, strict_range=False, strict_tag=True, str_spans=True)
dist_fns["lenient range lenient tag"] = lambda x, y: 1 - eval_f1(x, y, strict_range=False, strict_tag=False, str_spans=True)
return test_experiment("NER", NERExperiment, eval_fns, dist_fns, debug=debug)
def spam(expmnt, frac_spammers):
uids = expmnt.annodf.groupby(expmnt.uid_colname)[expmnt.label_colname].count().sort_values(ascending=False).index
n_skip = np.round(1 / frac_spammers).astype(int)
spammer_uids = uids[n_skip::n_skip]
spammer_rows = expmnt.annodf[expmnt.uid_colname].isin(spammer_uids)
spam_labels = expmnt.annodf.loc[spammer_rows, expmnt.label_colname].sample(frac=1)
expmnt.annodf.loc[spammer_rows, expmnt.label_colname] = spam_labels.values
def test_experiment(experiment_name,
experiment_factory,
eval_fn_dict={"default":None},
dist_fn_dict={"default":None},
dem_iter=500,
mas_iter=5000,
prune_ratio=0,
frac_semisup=0,
frac_spammers=0,
debug=False,
**kwargs):
results = []
for eval_name, eval_fn in eval_fn_dict.items():
for dist_name, dist_fn in dist_fn_dict.items():
if debug:
print("\n", eval_name, dist_name)
inputs = {"eval_fn": eval_fn, "dist_fn": dist_fn}
the_experiment = experiment_factory(**{k: v for k, v in inputs.items() if v is not None})
the_experiment.prune_ratio = prune_ratio
the_experiment.setup(**kwargs)
if frac_spammers > 0:
spam(the_experiment, frac_spammers)
the_experiment.setup()
print(the_experiment.describe_data())
# uskdf = get_annotator_empirical_skill(the_experiment)
# print("baumean", "goldmean")
# print(uskdf["bauscore"].mean(), uskdf["goldscore"].mean())
# print("baustd", "goldstd")
# print(uskdf["bauscore"].std(), uskdf["goldscore"].std())
if frac_semisup > 0:
nsemisupervised = int(len(the_experiment.golddict) * frac_semisup)
experiments.set_supervised_items(the_experiment, nsemisupervised)
semisup_exp = the_experiment.datacopy()
the_experiment.train(dem_iter=dem_iter, mas_iter=mas_iter)
# the_experiment.register_weighted_merge() # TODO uncomment
the_experiment.test(debug=False)
if frac_semisup > 0:
experiments.make_supervised_standata(semisup_exp)
semisup_exp.train(dem_iter=dem_iter, mas_iter=mas_iter)
# semisup_exp.register_weighted_merge()
semisup_exp.test(debug=False)
for method_name in semisup_exp.scoreboard.keys():
the_experiment.scoreboard[F"SEMISUP {method_name}"] = semisup_exp.scoreboard.get(method_name)
the_experiment.scoreboard_scores[F"SEMISUP {method_name}"] = semisup_exp.scoreboard_scores.get(method_name)
for method_name, score in the_experiment.scoreboard.items():
if debug:
print(method_name, score)
ss = the_experiment.statistical_significance(method_name)
results.append(ExperimentResult(experiment_name, eval_name, dist_name, method_name, None, score, ss))
results_df = pd.concat([r.reset_index() for r in results])
results_df.to_csv(F"results/{experiment_name}_results.csv")
return the_experiment, results_df
def test_iaa(experiment_cls, distance_fns, n_splits=10, cache_item_errors=False):
the_exp = experiment_cls()
the_exp.setup()
the_exp.describe_data()
n_items = len(the_exp.annodf[the_exp.item_colname].unique())
items_per_split = int(n_items / n_splits)
items_to_split = None
for distance_fn in distance_fns:
iaa = agreement.InterAnnotatorAgreement.create_from_experiment(the_exp, distance_fn=distance_fn)
iaa.setup()
if items_to_split is None or not cache_item_errors:
items_to_split = agreement.split_items_by_gold_error(iaa, items_per_split=items_per_split)
mini_iaas = agreement.split_iaa_by_item(iaa, split_items=items_to_split)
file_out_name = F"IAA-{experiment_cls.__name__}-{distance_fn.__name__}"
with open(F"{file_out_name}.pkl", 'wb') as file_stream:
pickle.dump(mini_iaas, file_stream)
def split_by_golderr(expmnt, n_splits=3, train_and_test=True):
iaa = agreement.InterAnnotatorAgreement.create_from_experiment(expmnt)
items_per_split = np.floor(expmnt.stan_data["NITEMS"] / n_splits)
items_to_split = agreement.split_items_by_gold_error(iaa, items_per_split=items_per_split)
if not hasattr(expmnt, "golddf") or expmnt.golddf is None:
expmnt.golddf = pd.DataFrame({
expmnt.item_colname:list(expmnt.golddict.keys()),
expmnt.label_colname:list(expmnt.golddict.values())
})
mini_expmnts = []
for items in items_to_split:
mini_annodf = expmnt.annodf[expmnt.annodf[expmnt.item_colname].isin(items)]
mini_golddf = expmnt.golddf[expmnt.golddf[expmnt.item_colname].isin(items)]
mini_expmnt = experiments.RealExperiment(expmnt.eval_fn,
expmnt.label_colname,
expmnt.item_colname,
expmnt.uid_colname,
distance_fn=expmnt.distance_fn)
mini_expmnt.setup(annodf=mini_annodf, golddf=expmnt.golddf.copy(), c_gold_item=expmnt.item_colname, c_gold_label=expmnt.label_colname)
mini_expmnts.append(mini_expmnt)
if train_and_test:
for mini_expmnt in mini_expmnts:
mini_expmnt.train(dem_iter=0, mas_iter=500)
mini_expmnt.test(debug=False)
print(mini_expmnt.scoreboard)
return mini_expmnts
def test_dist_vs_eval(experiment_cls, distance_fns, inv_eval_fns=None, export_details=True):
if inv_eval_fns is None:
inv_eval_fns = distance_fns
columns = {}
exp_name = experiment_cls.__name__
for distance_fn in distance_fns:
the_exp = experiment_cls()
the_exp.distance_fn = distance_fn
the_exp.setup()
for inv_eval_fn in inv_eval_fns:
the_exp.eval_fn = lambda x, y: 1 - inv_eval_fn(x, y)
the_exp.train(dem_iter=0, mas_iter=500)
the_exp.test(debug=False)
dist_name = distance_fn.__name__
eval_name = inv_eval_fn.__name__
sad = the_exp.scoreboard.get("SMALLEST AVERAGE DISTANCE")
mas = the_exp.scoreboard.get("MULTIDIMENSIONAL ANNOTATION SCALING")
columns.setdefault("experiment", []).append(exp_name)
columns.setdefault("distance_fn", []).append(dist_name)
columns.setdefault("eval_fn", []).append(eval_name)
columns.setdefault("sad", []).append(sad)
columns.setdefault("mas", []).append(mas)
if export_details:
file_out_name = F"DISTEVAL-{exp_name}-{dist_name}-{eval_name}"
with open(F"{file_out_name}.pkl", 'wb') as file_stream:
pickle.dump(the_exp.scoreboard_scores, file_stream)
with open(F"DISTEVAL-{exp_name}.pkl", 'wb') as file_stream:
pickle.dump(pd.DataFrame(columns), file_stream)
if __name__ == '__main__':
test_NER()