|
2 | 2 | "cells": [
|
3 | 3 | {
|
4 | 4 | "cell_type": "markdown",
|
5 |
| - "id": "4db5d14d-ee57-4791-9ab7-58cb2ff2cc3b", |
| 5 | + "id": "a1ccac1c-5d4e-47dc-9d5e-4f417126df94", |
6 | 6 | "metadata": {},
|
7 | 7 | "source": [
|
8 |
| - "<img src=\"https://raw.githubusercontent.com/NCAR/dask-tutorial/main/images/NCAR-contemp-logo-blue.png\"\n", |
9 |
| - " width=\"750px\"\n", |
10 |
| - " alt=\"NCAR logo\"\n", |
11 |
| - " style=\"vertical-align:middle;margin:30px 0px\"/>\n", |
12 |
| - "\n", |
| 8 | + "<img src=\"https://docs.dask.org/en/stable/_images/dask_horizontal.svg\"\n", |
| 9 | + " width=\"30%\"\n", |
| 10 | + " alt=\"Dask logo\"\n", |
| 11 | + " align=\"right\"\n", |
| 12 | + "/>\n", |
13 | 13 | "\n",
|
14 | 14 | "# Dask Overview\n",
|
15 | 15 | "\n",
|
16 |
| - "**ESDS Dask Tutorial | 06 February, 2023** \n", |
17 |
| - "\n", |
18 |
| - "Negin Sobhani, Brian Vanderwende, Deepak Cherian, Ben Kirk \n", |
19 |
| - "Computational & Information Systems Lab (CISL) \n", |
20 |
| - |
21 |
| - "\n", |
22 |
| - "\n", |
23 |
| - "---------" |
24 |
| - ] |
25 |
| - }, |
26 |
| - { |
27 |
| - "cell_type": "markdown", |
28 |
| - "id": "5b6211a0-3762-41a2-8a45-6b19ce32f658", |
29 |
| - "metadata": {}, |
30 |
| - "source": [ |
31 |
| - "**In this tutorial, you learn:**\n", |
| 16 | + "### In this tutorial, you learn:\n", |
32 | 17 | "\n",
|
33 | 18 | "* What is Dask?\n",
|
34 | 19 | "* Why Dask in Geosciences?\n",
|
|
54 | 39 | "\n",
|
55 | 40 | "## What is Dask?\n",
|
56 | 41 | "\n",
|
57 |
| - "<img src=\"https://raw.githubusercontent.com/NCAR/dask-tutorial/main/images/dask_horizontal.svg\"\n", |
58 |
| - " width=\"500px\"\n", |
59 |
| - " alt=\"NCAR logo\"\n", |
60 |
| - " style=\"vertical-align:middle;margin:30px 0px\"/>\n", |
61 |
| - "\n", |
62 | 42 | "* Dask is an open-source Python library for parallel and distributed computing that scales the existing Python ecosystem.\n",
|
63 | 43 | "\n",
|
64 | 44 | "* Dask was developed to scale Python packages such as Numpy, Pandas, and Xarray to multi-core machines and distributed clusters when datasets exceed memory.\n",
|
|
109 | 89 | "\n",
|
110 | 90 | "</ul>\n",
|
111 | 91 | "And keep in mind - all of the above steps improve your code whether you end up using Dask or not!</br></br>\n",
|
112 |
| - "<img src=\"https://raw.githubusercontent.com/NCAR/dask-tutorial/main/images/dask_twitter.png\"\n", |
| 92 | + "<img src=\"https://raw.githubusercontent.com/ProjectPythia/dask-cookbook/main/notebooks/images/dask_twitter.png\"\n", |
113 | 93 | " width=\"500px\"/>\n",
|
114 | 94 | "\n",
|
115 | 95 | "</div>\n",
|
|
166 | 146 | "\n",
|
167 | 147 | "These are very powerfull tools, but it is easy to write something using a delayed function that could be executed faster and more simply using a high-level collection \n",
|
168 | 148 | "\n",
|
169 |
| - "<img src=\"https://raw.githubusercontent.com/NCAR/dask-tutorial/main/images/high_vs_low_level_coll_analogy.png\"\n", |
| 149 | + "<img src=\"https://raw.githubusercontent.com/ProjectPythia/dask-cookbook/main/notebooks/images/high_vs_low_level_coll_analogy.png\"\n", |
170 | 150 | " width=\"83%\"\n",
|
171 | 151 | " alt=\"Dask Collections\"/>\n",
|
172 | 152 | " \n",
|
173 |
| - "*Image credit: Anaconda, Inc. and contributors*\n", |
| 153 | + "*Image credit: Dask Contributors*\n", |
174 | 154 | "\n",
|
175 | 155 | "\n",
|
176 | 156 | "### 2. Dynamic Task Scheduling\n",
|
|
190 | 170 | " width=\"75%\"\n",
|
191 | 171 | " alt=\"Dask Distributed Cluster\"/>\n",
|
192 | 172 | " \n",
|
193 |
| - "*Image credit: Anaconda, Inc. and contributors*\n", |
| 173 | + "*Image credit: Dask Contributors*\n", |
194 | 174 | "\n",
|
195 | 175 | "\n",
|
196 | 176 | "We will learn more about Dask Collections and Dynamic Task Scheduling in the next tutorials."
|
|
231 | 211 | "name": "python",
|
232 | 212 | "nbconvert_exporter": "python",
|
233 | 213 | "pygments_lexer": "ipython3",
|
234 |
| - "version": "3.9.16" |
| 214 | + "version": "3.9.18" |
235 | 215 | },
|
236 | 216 | "widgets": {
|
237 | 217 | "application/vnd.jupyter.widget-state+json": {
|
|
0 commit comments